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THEORY OF THE THREE-DIMENSIONAL STRESS STATE IN A
PLATE WITH A HOLE

J. B. Alblas

For the special cases of stretching and bending of an
infinite plate with a circular cylindrical hole, a rigorous
analysis is developed in this thesis. The method of investi-
gation is based on the use of complex eigenfunctions, whose
general theory was developed some years ago by Green (Ref. 5).
It is the purpose of this investigation to examine the effect
of the plate-thickness on the stress distribution and to
discuss the errors due to the approximate character of
current two-dimensional theories.

INTRODUCTION AND SUMMARY IX*

In the classical theory of elasticity, it is customary to discuss the
" problems pertaining to plates loaded ih, or perpendicular to, their plane on
~ the basis of a two-dimensional theory. For this purpose, the general three-
dimensional equations -- for which there is only a small number of particular
cases for which an exact solution is known -- are replaced by a system in
f i which the unknowns only depend on the goordinates along the surface of the
' plate. On the basis of this simplification, certain assumptions are postu~

-“iatedﬂmrﬂﬂmrbasis*of—physicai'cunsiderattons -regarding—the—dependence-of--the-;

‘ tension intensity of the coordinate in.the normal direction. However, it is

H

3
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" a fact that the approximate nature of the two-dimensional solution is not al-

ways realized in the literature when discussing problems of stress in plates
* of arbitrary thickness. For this reason, one of the purposes of this report
is to submit the customary computational methods to a critical investigation,
. and to provide an evaluation of the mistakes which result from the assumptions
employed.

: In order to arrive at quantitativé results, a few special plate problems

. will be discussed which are related to traction and flexure of cylindrically-
perforated isotropic plates. It will be assumed that the influence of the
thickness of these plates on the stress distribution is not known. In order

© to simplify the calculations, it will be assumed that the plates are infinite-
ly extended and stressed along the edges.

The perforated plate, which is loaded in tension, has already been inves-
tigated several times., Kirech (Ref. 1) 1) was the f1rst one to calculate the
influence of a small circular hole on the stress distribution in a very thin
or a very thick plate. The solution given by Kirsch, which is of important

*  Numbers in the margin indicate pagination in the original foreign text.

(1) Numbers between the parentheses refer to the literature on page 91.
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-historical significance, describes the stress distribution in the plate as a
‘plane state of deformation. The theory of the general state of plane-stress
;was given by Silon (Ref. 2) a few years later. (Also see (Ref. 3), § 94 and
:146) . Reissner (Ref. 9) has given an approximate theory for the deviations

- existing between the state of stress occurring in reality, and the stresses [X_
.which are found, on the basis of the theory of generalized plane-state of

" stress. Reissner indicates the points at which the corrections to the classi-
. cal values may become significant, but he does not provide numerical results.

Green (Ref. 4) was the first author to point out the necessity of testing
the accuracy provided by the theory of the generalized plane state of stress
as opposed to the exact solution of the three-dimensional problem. For this
purpose, he has developed a theory for the plate of finite thickness with cir-
cular-cylindrical perforations which is loaded in tension. For the case in
which the thickness of the plate equals the diameter of the hole, the formu-
las have been worked out numerically. As a result of this process, he arrived
at two important conclusions -- namely, that the average value of the concen-

" tration of tension at the hole, according to the three-dimensional theory, is.
; in good accord with the similar value provided by the generalized theory of .
- plane stress. However, as might be expected, the value of a stress component |

in the immediate proximity of a border plane deviates rather considerably from!

the average value over the thickness. One disadvantage inherent to the method'
advanced by Green, as he developed in (Ref. 4), is the fact that this method

results in a system of equations whoseicoefficients cannot be readily estab- |
lished. As a result of this, the extehsion to other ratios of the thickness

t6the” hoTe diameter becomes difficult. ~For this " TYéason, Greed

. later publication (Ref. 5), pointed out another method by means of which

numerical results can be obtained more readily. This method presents a devel-

. opment toward complex eigen functions for general, three-dimensional plate

" problems, and it provides the basis of the method of eigen functions to be

developed in this report.

The methods which have been developed by Green have one disadvantage in

. the fact that the convergence of the occurring series becomes worse when the
- thickness is increased. A method for calculating the three-dimensional states

of stress, which may be applied to all thicknesses, has been developed by
Sternberg and Sadowsky (Ref. 6). They approached the problem with the aid of
stress functions which satisfy the equilibrium conditions and the boundary

~ conditions, and employ the method of Ritz. Their results provide adequate
. qualitative insight, but they are not always quantitatively correct due to
. the computational method which is employed.

~adn

The first calculations performed for the perforated plate loaded in
flexure were performed by Bickley (Ref. 7) and Goodier (Ref. 8). Bickley /XI
started with the generalized state of plane stress, and obtained the solution
which is called an'elementary" solution in this report. He determines the

. constants which have to be established by means of the two boundary conditiomns

given by Kirchhoff. The work of Goodier is more general, because the influ-
ence of elliptic holes is also discussed. However, it does not surpass the
work of Bickley with regard to the circular hole. Reissner (Ref. 10) has
developed a more general theory for the flexure of thin plates, with which

et o



‘three boundary conditions can be fulfilled on a boundary. In this theory,

which expands upon the report (Ref. 9) of Reissner, a simple dependence on

~the thickness-coordinate is used for the stresses. In addition, a variational

‘principle is employed for the deduction of the fundamental equations. Reiss-

ner has applied his theory to the flexure of a circularly-perforated plate.
He finds deviations from the classical theory which are important. In his
publication (Ref. 5), Green has clarified the connection between the theory of
Reissner and the precise theory. In Chapter III, we shall discuss this matter

"in greater detail.

When one applies the experimental method for determining the residual
stresses advanced by Mathar (Ref. 11) and Soete (Ref. 12, 13, 14), a number of
incorrect elements 1s introduced. One of these is the result produced by em-
ploying the formulas of the theory of plane-stress. [See also in this respect,
. (Ref. 15, 16).] Consequently, on the basis of the three-dimensional theory,
'it is desirable to establish the influence of the plate thickness upon the

~stress distribution at the periphery of the hole.

i

The purpose of the investigation described in this report is to continue
- the work performed in the references mentioned above. Chapter I disucsses the
problem of the circularly-perforated, infinitely extended isotropic plate,
which is loaded in tension. The solution of this problem is sought in the
form of a superposition of a state of plane stress and an infinite series of

,three—dimensional stress states. An idfinite system of equations is derived

. for the coefficients which multiply each of these stress states, TIn the case |

?of the very thin plate, asymptotic developments are given for these coeffi- |

cients. Since all stress states are derived from potential functions, an :
appendix has been added to Chapter I, which illustrates the comprehensive
nature of the system of potential functions employed.

The results derived from the numerical calculations of the problem pre-

sented in Chapter I are discussed in Chapter II. It is apparent that these /XII

numerical calculations become continuously more extemsive, in proportion to

. the increase of the plate thickness, The reason for this lies in the fact
‘ that in an increasing ratio of thickness to diameter, the number of three-

dimensional stress states in the infinite series which has to be included in
the calculation increases considerably. On the other hand, it is apparent
_that in the case of a plate thickness, which is double the diameter of the
hole, the state of plane deformation already occurs in the center of the plate.
- It can be expected that above this ratio the values of the stresses at the
boundary planes, as well as in the proximity of the hole, will not change con-

" siderably as a result of further increases in the thickness. This has been

confirmed by experimental investigations. For this reason, the calculations

. have been performed up to a thickness which is twice as large as the diameter
: of the hole. The results can then be extrapolated to very thick plates with
- reasonable exactitude.

‘The flexure of a perforated plate is discussed in Chapter III. The

. theory advanced for this parallels the theory presented in Chapter I, for the
"most part. In this case, particular attention is also given to the limiting

noba kil



‘case of the thin plate. The relationship between the exact theory and the
theory of Reissner is discussed extensively, as a result of which new insights
‘are obtained with regard to the work of Green (Ref. 5).

: The numerical results derived from the calculations performed in Chapter
'III are presented in Chapter IV. For a thick plate, where the higher terms in
the development cannot be neglected, the results are compared with those ob-
‘tained on the basis of the theory of Reissner. It becomes clear that the
exact value of the stress concentration factor at the boundary plane is less
than that derived from the theory of Reissner. However, this approximate
theory provides an excellent prediction of the concentration factor for the
tangential flexure moment.

In Chapter V the calculations are applied during a theoretical discussion
of the method advanced by Mathar-Soete. The influence of the thickness upon
the interpretation of the observations is calculated for the tension loading,

as well as for flexure. This proves to be small for tension, and large for
flexure.

CHAPTER I | /1

; THEORY OF THE PLATE STRESSED IN ITS PLANE %

T, = fanioemaa

1. 1 Introduction

The treatment of a problem in the three-dimensional theory of elasticity
of a homogeneous isotropic body, in which no mass forces are operating, means
‘mathematically that we must try to determine a solution of a system of partial

differential equations of the sixth order (Ref. 17)

%u u *u 1 Jec -

e T 9y? T ticyn o 0

v 2y v 1 Jev ;

2 x2 + ayz + 9z + 1— 2y ay ""0’ ‘ (1.1)
: 0w 0*w w 1 C &y
i . —1— =
g o x? + cyr ' 022 + 1—2v ¢z 0, -

‘which, on the surface of the body, has to satisfy three boundary conditionms.
; Here (x, y, z) are the three Cartesian coordinates, (u, v, w) are the dis-
-placements in the x-y-z-system, v is the Poisson number, and €, is the volume
“extension, given by

3
= v 2w (1.2) |

ax+8y oz

A number of exact solutions is known for the system (1.1) (with the boun-
dary conditions): Either some of the displacements have a simple form, or

4



the equations can be reduced to a more simple form as a result of established
symmetry. In the case which will be discussed, however, the exact solutions
of (1.1) will be obtained only in the form of an infinite series.

It is expedient not to start directly from equations (1l.1), but to inte-
' grate these equations using potential functions. The potential functions
used in this report were introduced for the first time by Boussinesq (Ref. 18)
and were later used by Dougall (Ref. 34) with this type of problems. A general
- discussion of the integration of {1.1) by means of potential functiong will he
- found in the appendix of this chapter. 12

1.2 The Potentials

Three potential functions are used: A, B1 and BZ’ all of which are solu—i
tions of the equation of Laplace in which

A (As Bb B2) =0 (1.3)
:from which we have
az az az
A==aﬁ + 3y + T

If the displacements (u, v, w) are expressed by means of the potential
. function A through the following equations

e e i —— —

;

i ; . .
@ =t =28 (1.4)

| l ¢y ox :_

;equation (1.1) will be satisfied identically, while
&y = 0. (1.5)

This is likewise the case for displacements (u, v, w), derived from a
potential function B1 through

aBl e 331 w = aBl

_ = . 1‘
v , o0x 2V oy ’ o0z 1.6)
Also in this case we have
2= 0. (1.7)

A third system of displacements (u, v, w) is derived from a potential
function B2 through

9B, * B,
U= T e
0B, 9B, .
3 10 J
0y +’ayaz (1.8)
2B, 0B,

V=%, tz 9z




7 In order that these displacements may be solutions of (1.1), a rela~ /3
tion must exist between o and y

7—a==———3+4v, ' (1.9)

.with which we obtain

: *B
gy = —2(1—2v) azj. (1.10)

One of the constants a and y can be freely chosen.

In the following we shall employ

a=2(1—1y),

1.11
v = —(1—2v). ¢ )

In some cases, another choice of the constants o and y is more expedient --

namely,
a==1-—2,
. y = —2{1—v),
respectively a= 0, 5 (1.12)

’/=—3~+4v. !

| |
i

The potentials A, Bl and Bz are always independent. This may be seen in

fact that with A, the values of = ‘and o, are zero everywhere, with gl
- ; ) - v

“only €, is zero everywhere, but not 0, With BZ’ neither €y nor o, disappear

identically. 1In the appendix it is proven that the potential function system
(A, By BZ) is also complete for the problems to be discussed in this report.

1
B

; 1.3 Transformation to Cylindrical Coordinates

For the problem of the plate with a cylindrical hole loaded in tension,
it is expedient to introduce the cylindrical coordinates (r, ¢, 2). The dis-
placements (ur, u,, uz) are derived from the potentials using the following

¢
: formulae . 5 A N
| . 4 0 ! i
! : e Uy == s Ug = — ———, U, =0; -
| r o 7 or " (1.13)
oo B 1 _°B, o _ 2B,
| i r er % r d¢ ~ 0 8z’ (1.14)
?' _ 8B B ]
Ye = 757 drdz
«a 9B, z @B,
Up = T d¢ + r d¢dz (1.15)
3B, 9B,
W=y, TIggn




The connection between the stresses and the displacements is expressed

" by the following known equations (Ref. 3) /4
; Cr . Bu, v - |
3G ar T i—3y v
"W —_ 1 autp u, v
3G ~ r 8y T T tizm e
o, dug v
26~ 7z T =y
.1

’ o2 | ( 1 2u, 2 ug (1.16)

26 T 2 et )

Trz 1 aur au,
== -+

; 2G 2 ( ¢z ' Or }
X 2G 2 r d¢ or r B

T

In this (cr, o T__ and Tr¢) are the tensions in cylindrical

$? % ¢z’ ‘rz
coordinates, G is the shear modulus, while the volume strain €, in cylindri-

cal coordinates is given by

S S 1 3wy | du, (1.17)
& r ar Ut o T 52 o

With the aid of the equations (1.13), (1.14), (1.15), (1.16) and (1.17),
we may readily obtain

: for the function A ' ER
: o« 1 A 1 2A 7
2G  r 0rde © ¢ °
§
o __ e 1 #A 1 2a
: 2G  2G r 0rde 2 Q¢
X o, =0,
Tip 1 92A ) ‘ (1°18>‘
2G 2 9roz’
i
! a1 0% A
2G =~ 2r dgoz’
o e 1 2A L FA 1 A
26~ 2r ar 2 Qe 212 9¢*




for the function B]

: oo B, -1
T 2G T ¢’
G'P —_ az B1 62 B1
2G ort | oz’
L £3 _ 32 B1
2G T 022
1.19)
Tw; 1 32 B1 p ( i
H
E 2G r 0d¢0z2’ !
: i
tw @B,
2G ~ 9roz’ :
{
Trv —_ 1 82 B1 _ 1 aBl . ‘
2G ~  r orde o de °’
for the function B, 6
o @B, , &B, B ]
SRR X 2(1—v) or’ — 02z° tarez Lo et e
o 2B, , B, B, __¥B
2G =—2(1—v) or? 32 ‘orfez 9z’
i L £3 _ aa B2
26~ T8z’
o _ 1 Bz @B (1.20)
2G ot d0zde r 02°0¢°
Trz . 82 Bg 33 Bg i
2G  2rez Zaroz ‘
Tp_ 201—v) @B, 2(1—v) 2B, |
} 2G r deiz r? ¢
91
z ¥ B, z @B,
7 T Prigrz 2 farz ‘
“l : -
5 .. _1l.4 The Tension-Loaded Perforated Plate
= : After the preparations in the precteding sections, we can now pass on to

]

.8

the actual problem. We shall examine a uniform isotropic plate whose median




plane coincides with the x~y plane and which is delimited by the planes z =

‘th. The plate extends in both the x- and the y-direction from -« to +», The
- plate is pierced by a cylinder of radius a; the cylinder's median line runms
- ialong the z-axis. The plate is tension-loaded in the x-direction by infinite,
"uniformly distributed stress T. ’

Mathematically, the problem is defined by equations (1.1) with the boun-

dary conditions 17
Oy == Txz == Tyz = 0 for z = =+ h, (1'21)
o =T, o =1, =0 fOT:'r.: VX + v > o0 (1.22)
Or = Tz == Trp = 0 along hole edge r = 3. i (1.23) ;

At a great distance from the hole, a plane state of stress prevails.

- This is defined in cylindrical coordinates by

or = 1/2T(1 + cos 2),

op = 1/2T(1—cos 2p), (1.24) ;
T =— 1/27T sin 2, ) |
O == Trz = Trg == 0.

In the vicinity of the hole, stress state (1.24) is disturbed. On stress

 state (1.24), ‘a stresz=distributton 1s now superposed witch strives to zero
Pat infinity and frees the boundary from stress.

1.5 Elementary Stress Distributiéns

Use will be made of several simple solutions of expression (1.3). Ex-
pression (1.3) is transformed into
Az A A2 n2 |
AL LRt S S (1.25)

aort r ¢r r- og* = ¢z

for cylindrical coordinates; here f is written for an arbitrary potential.

; One solutiog of expression (1.25), which is independent of z and ¢, is

f=clogr + c.. (1.26)

If solution (1.26) is chosen for function B,, the equations (1.19) then

1’

SYwm mmfon
5ch LADET v
[ 2 __ Cy ]
2G rr’
. 4
o _ . o | (1.27) !
2G [ '
0 = Ty =T = Trp = 0. _|

bbbl



become

A solution of expression (1.25) which is independent of z, but dependent

- of cos 2¢, is 18

pu— G
f= 7 €08 2¢. | (1.28)

If the solution (1.28) is now chosen for function Bl’ the equations (1.19)

Or ' 6C3 =
3G — 4 cos 2¢,
6
262 = — 1:3 cos 2p,
(1.29)
Trp 6C3 .
26 T Ty e
Vz=fzr=fzq)=0. _
Other solutions of expression (1.25) are
f = ( 2 L) fin 2 (1.30) -
o ) lcos 2 | ;
If now
A == " _z;_ ! L M
fc ( 3 5 )sm 2y,

. :
B, = c,( z + ; )cos2<p, f

: is chosen, superposition of stress values in accordance with expressions

(1.18) and (1.20) leads to

v 4(1+ 12 v2?
hd = —c, [ ( = v) + 2;2] cos 2¢p,

2G r?
2
206 = ¢ 1_21:1 cos 2¢,
1.31
Trp 2(1+v) 12 v22] . ( )
J4o2e T r’ + e | 2, 'T
Oy == Tzr == Tz9 = 0 :

The stress distributions (1.24), (1.27), (1.29) and (1.31) are four /9 .

- plane states of stress. These are superposed, and in so doing we set

__ Ta? ]
“=73c
T at
=556 (1.32)
T 2
C4='2—g“.D. B}




C and D are constants which are to be still more accurately determined.
_ Thus, we obtain

e

o 1 a? [1 at
T =3 (\1—r2>+c052¢l2 +6C pra

a? 12 va®z®

———D[4—(l+v) -+

W 17 > ES RN I SO
T > \1 . rzj—r—cmZgl 5 bCr4 -+
+D 12 va’z? | ‘ (1.33)

r f

4 2
AL sin2¢{——;—+60%—D[2(1 +v) ;:2—+

T
5 12 va?z? ]
, 4+ 2~ } b
O3 == Tzp == Ter = 0. -
It is clear that if |z[ <<a -- a condition which is fulfilled for all
‘ values of z by h <<a -~ the z2 terms in expression (1.33) may be neglected.

f In this case, the solution to this problem is given by

: S -, . v e«

1
C = e
(1.34a)

1

DN
In the generalized plane state of stress, it is required that the /10

average stress values over z satisfy the boundary conditions. We then find
that

1 v h? i
C =
4 + 3(1+v) a® ’
1 i
—_ s 1.34b

The formulas for the generalized plane state of stress are exactly ful-
filled if the half plate-thickness h is small in relation to the radius of
the hole a. When this condition is not met, nothing more can be accomplished
by fulfilling the boundary conditions for the averaged stresses alone. How-
ever, the requirement must be stipulated that these boundary conditions at
all points -- i.e., for all values of z —— be fulfilled by |z| < h. A number

- of other stress distributions must be added to stress distribution (1.33).
The nature of these added stress distributions is not elementary, and the
distributions are derived from more general solutions to equation (1.25). It

should be noted that by expression (1.33), the stresses each consist of two

11



fparts —- one part independent of ¢, and one proportional to cos 2¢ or sin 2¢.
. The first part already satisfies the boundary conditions along the hole. The
stress distribution to be added is proportional to cos 2, and sin 2 ..

¢ ¢

1.6 The Eigen Functions

, From the foregoing it immediately follows that potential functions having
the form

cos '
f(r: 12 Z) = g(l', Z) sin 2% : (1.35)

must be chosen, where g fulfills
; 1 g 4

d0*g 9
3¢ T T e T e ST a0 (1.36)

A general class of solutions to expression (1.36) was obtained by /11
- separating the variables. These solutions have the form :

(K:(Ar)) {cos Az

? L(Ar){ gsin Az (1.37)

g=

. in which IZ(Xr) and Kz(Ar) are modified second-order Bessel functions (Refs,

19, 20)*, and A is an arbitrary complex parameter. Of these solutions, only
~those with the Bessel functiton of-the second kind (K2ﬁfunctian}"-hwand*indeed ‘

- only those for which the real part of X is positive —- are taken into consi-
deration when it is stipulated that the corrections to the elementarily com-

- puted stress distributions must tend to zero for r + =, An attempt has been ;
made to formulate combinations of these solutions such that each of these
combinations fulfills the boundary conditions (1.21).

First of all, the following equation is established

Tas K.:(Ar)jcos Azsin 2; . (1.38)

By means of expression (1.18) it follows from this that for |z| = h

o, = 0,

2,2
L, "23 K.’ (Ar) sin Ah sin 2, (1.39)

—;I','— =F Aasz*i‘M-)— sin Ah cos 2¢. J

" * The definition of K,(z) used here is the one given in (Ref. 20) on page 373.
The definition according to (Ref. 19) deviates from this by a factor of
; cos nm [see also (Ref. 191, page 78).

12



VBdundary conditions (1.21) are fulfilled for every (r, ¢) if

k=

A= —

(k=12,....) (1.40)

A very general solution of expression (1.31) which fulfills boundary condi- /12
‘tions (1.21) is now obtained by combining these solutions linearly. We thus

‘have
‘ K kxr
A T a2 30’ 2( h)cos knz Gin 2
2G 2, & m(m) h i (1.41)
h

in which we may still freely deal with coefficients a . Solutions to the po-
‘tentials B, and B, are found in a similar fashion. These must be simultaneous-

; 1 2
{ly solved. With constants BT and B; it is assumed that
» 2
B, = B, -% K, {Ar) cos Az cos 2¢,

(1.42)

» 2 :
B. = B, —g%— K. (Ar) cos Az cos 2¢, :
By means of expressions (1.19) and (1.20) the boundary plate stresses for lz] =
‘= h are determined. It is found that

_(’,’1: == a%cos 2p Kynr) {— B: N cosah + B:.\"‘h sin \h}, i }"“"”" T e
Trz a , » PN * ” e
7 = F a‘cos 2¢ K,"(Ar) {B;A"sin /\h‘ ﬂ;Bg A*sin Ah (1.43)
+ B, A*h cos Ah},
—I%i— == == 2a%in 2¢ —I-i—%):l {B: A sin Ah + B:)» sin Ah +
+ B, a*h cos Ah).

It is impossible to make both the normal and the shear stresses simultaneocusly

equal to zero for all (r, ¢), for the Bl— or the B2-potential. This is possi-

ble for a combination of these potentials if the following equations can be
. fulfilled

B

B, cos Ah — B, Ah sin Ah = 0,

» » . (1.44)
B, sin Ah + B.sin Ah + B, Ah cos Ah = 0.
This system has non-trivial solutions if /13
; ‘ cos Ah — Ah sin Ah
o é = 05 (1045)
- sin Ah sin Ah + Ah cos Ah
j §or, after all operations are performed,
sin 2 Ah +2xh =0. (1.46)

13



‘ Except for A = 0, equation (1.46) has no real roots. It is apparent, how-
ever, that there is an infinite number of complex roots which here are called
eigen values and which are numbered with the subscript 2. If A is a root of

equation (1.46), then —Al, —Xk, and —X are also roots (the superlmposed bar

indicates the complex conjugate roots) Because of the requirement that the
corrections to the stresses when r + « tend toward zero, only the eigen values
A, are taken into consideration. Therefore, it is assumed that

2
Re A; > 0. (1.47)

‘Thus, by definition, K2(Ar) is (Ref. 19)
37

K: () = ——e * H,™ (ir), (1.48)

while the asymptotic behavior of H e )(u) is glven (Ref. 19) by

(1) (u —_ u——T'_ (1.49) .
The solution to expression (1.44) in terms of Az is
* ]
By = By Ahtg Ash, (1.50)
by which combination (1.42) may be further specified
» e 1 Ta K. (A1) )
B, = 5 %G b; Ath tg Ah K, (hra) cos A1z cos 2¢,
B, = LT b K. (ur) €os Az cos 2 (150
~ T2 726 K. (hia) 0T

In this bk is an arbitrary complex constant. The (1.51) solution, which is
complex, is taken together with solution [14

1 Ta? - ~ - Ki(hr) -
B, — —— —— —20
1 5 oG b; Athtg Ath K, (hra) €os Az cos 2¢,
] 1 Ta? - K. (AT _
B, = —/— =~ 1) cos Az cos 2,

: —_—
2 2G K. (A;a)

‘and this gives rise to a real result., Therefore, in the following AQ can al-

ways be assumed to mean an eigen value which also has a positive imaginary
part.

For the further elaboration of this point, it is reasonable to make the
quantitles dimensionless. For this purpose we introduce

r‘ r=:_r__.
a

(1.52)

14
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At =

‘Since there is no fear of confusion, the asterisks in the symbols are omitted
The total system of solutions with the eigen value equation is

from now on.

in which the dimensionless parameter B is defined by

A — Ta?
26 ,

Ta2

T a*

sin 23 + 20, =0,

2 ™K (knB)

K. (krgr)

)
Z b A tg A

%2 K, (M Br)

2 " Knp

a

=

|

Nl
cos knz sin 2, ‘~
vﬁi;\:l-g%)— cos Az cos 2¢,
2l (1.53)
€03 Az cos 2¢,
/15
| (1.54)

In the next step, an attempt will be made to define constants (ak, b ) in

such a way that the stress system derived from expression (1,33),

togeth ; WLQE

‘expression (1.31), fulfills the boundary values for all values of z whenr = 1.

1.7 Stresses on the Edge of Hole when r = 1

As has already been mentioned previously, the stresses may be written in

‘the form

or
Tiz

Trg

I

[

Il

Tig T 1 sin

a!® + o cos 2¢,

73 cos 2¢,

20,

(1.55)

|

;in which the stress values provided with a superscript are independent of ¢.

According to expression (1.33), it thus follows for the stresses, when r = 1,

“that

T 2
1 =0,
e _ L
T 2

:By means of the well-known expansion (Ref. 21)

2 } 7]

(1.56)
120 Z]
g )

15



PIRTH

Ry

Oy~

L~

tions (Ref. 20)

— 1)k 1
72 = ; + 4’2 %] ( l)kzcoskrz (_1 gzs l) | (1.57)
k= |
wWe may write /16
a(rz) 1 s —
T T +6C—-D(4(1+v)+
v 48y = (= D*coskwz)
+ Bz +”—2:8—2_k-2_-‘1—TS”
1y =0, (1.58)
(2) '
' 1
L%"__T+GC‘D:2(1 +v) —
b 48y (=1*cosknz )
'32- +7r2,32 ké"l k2 S -J‘

Use is made of certain well-known recurrence relationships for the Bessel func-*
i

K2 (M) = Ki(A) — K.(A), | (1.59) 5

1 6

e B = e K F R e KA L (1.60)

:to derive the stress magnitudes from the potentials. By means of formulas
:(1.18), we derive

at® . ' -
.i. = 3 a{2 K(kn8) — 2} cos knz, :
k=1
T 0
=8 3 a {— kr} sin krz,
T - (1.61)
1y @ { k? =2 2 1
T = kgl asz(kw,B) —— —-—4§cosk7rz. | ‘

- from potential A by expression (1.53) when r = 1. Here a new symbol for the

-quotient of Bessel functioms K (A) and K (A) is introduced, given by formula

AK’( ) )\Kl (A)

= — 2!
K(A) K ) K () 2.‘ (1.62)
' This K-function plays an important role throughout the entire work. [17

Subsequently, from potential B1 by means of expression (1.19), the follow-é
ing formulas | "

ol

T == Re 2 b; A tgh {—K /A,B)+Azl'32+4}cos/\zz;l ' ‘
=t | (1.63)

16



AT

2 - .
-i: = BRe 3 bihtg) {— XM K (A B) )} sin Az,
1=1
: z2) o0
‘ :I? =Re 3 biratgh {—2K(MB8) +2}cos;z,
; I=1 |

: 1are derived for the stresses "when r = 1., From BZ’ by expression (1.20) and for

r = 1 we can compute

¢!?

T

— Re {3* bi {(—2(1 —v) (K(M ) —4) +
=1

+ 22 B} cos Az + 3:0' by {K (M B) —A% B — 4} Arzsin g z] s
=1

2)
tl‘l

T

= BRe [ g b {— A K(AB)}sinhz +
=1

+ Iéo'l bi {(—MK(MB)}Aizcos Az },

{2)
Trp

= Re [12‘1 bi{—4(1—v) (K(MB)—1)}coshiz +

+ lé’?l bi {2 (K(AB) — 1)} ArzsinA;z ] .

—

|

Stresses (1.61), (1.63) and (1.64) are taken together. The result is writtén ~

(2) 0 B
"1’, =Re| 3 a,p coskmz+ [
k=1
o e
+ 3 biqf? cosmz+ 3 bir{PArzsini;z ],
1=1 1=1
@ ® -
T = —BRe | ¥ a p? sinknz +
: m .
: + 3 biq@®sinrnz+ X b;r‘f’)qzcos/\;zJ,
N =1 1=1
: 2 - |
—,r;— = Re [ P 2, pi* cos knz + ‘
k=
; on oo . ’l
o 1 + X bhia® cosnz+ ¥ bir{® Mizsiniz |,
i 1=1 1=1 17

gwhere the following values are introducéd

/18

(1.65)

(1.66)

17



q® = {Aitgh +2(1—v)} {(—K(NB) +4} + ]
+ Az B2 (M tg A+ 2), ! (1.67)
qaz) = A\ (Al tgkz + 1) {K (lz‘B) },
QP =—2(Ntgh +2(1—v)) (K(MB)—1); _
i = K(x8) —A4 B —4 ]
= nK(MuB), (1.68)
ri= 2 (K (yg8)—1). _

The form of the stresses, as given in expression (1.65), is still in- /19
convenient for further development. Therefore, these stresses will be ex-
fpanded in Fourier series. It is simple to derive the following auxilliary
formulas for real or complex A, and for-12z<1

L
1 cosAz = 530+ 3 sp; €08 kaz,
- m . ‘
siniA;z == 2 uncsinkxz, !
k=1 | (1.69)
- : w
AzsinAiz =t + 3ty coskaz,
e e s i e s L e g =
w .
Alzcos Az = 2 Visinkrz,
k=1 -
in which the following notation is employed:
sin A; 7
510 = 1\.[ ’
. (— )k
Sk = 2A;sind; ————,
ix 1sin A PO
. {(— L)¥kn
Uy = 2Slnhlm,
S (1.70)
: tio = —cos A + s , ' ;
: Al 1
g |
. . AT — k=t
3! tne = 2 M;sind; (— 1)¥ [—ol——,—ﬁ——Mté—lq s
- 2 . B [{A'z——k'r;‘ AS —k2 =2 I
S
6 kxcot A 2
5 vik == 2 XNsin A (— 1D)E co ALE— ,,hl\ll:r.w .
A S M=K A=k |

It may be noted that these coefficients are, on the whole, asymmetrical in
_their subscripts.

18




If é;pression (1.70) is introduced into expression (165), we have /20

e

(2) @ N
o"i‘ = Re [ 2 by + % y apt +
=1 k=1 (
o0
+ X b,,b{‘k’% cosknz];
1=1
e 3
—T'— =——BRC[ > gakpf(ﬂ"{'
k=1 (1.71)
0 )
+ 3 by smk:rz} s
=1 S
@ @ ped
2% _— Re [ > by 4+ ¥ gakpff’ + !
jo o]
+ bupﬁ(’g coskn-z].
I=1
Here abbreviations given by
PP = Qs o b,
¢;;» = q'? u + ri? vy (1.72)
l“,‘:’ p— qia) Sik + r(‘3) to;

are again introduced. These formulas hold for (k =0, 1, 2, ...), (8 =1, 2,

«+.) on the condition that 11)22 = 0,
o

The formal solution of the problem is obtained by superposing the stresses
according to expression (1.71) and those according to expression (1.58), and
by setting the coefficients of cos kmnz and sin kmz one after another equal to
zero in the development. In this way, we obtain a system of equations of the
following form

S

w b

(893

k=1,

2, ...

Re 3 bz'h%’+GC——D34(1+v)+ﬁz’-§=.__1_,
(=1 A 2 (1.73)
Re $ by +6Cc—Dl2(1+y + 20— 1
1= { £ 2
- /21
apl’ +Re I by =p & (D
1=1 ™ 3 k:
[o.2}
ap®” +Re 3 by =0, a .
=1 | (1.74)
Tt (3) e m o By (—1)k
p” +Re 151 by ¢ (2 *DW Lk: )
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" ‘Further, we may write

;of 3N unknowns: ays eees 3 bl’ eves b

The system (1.74) is a three-dimensional infinite system of equatlons with
.a three-dimensional infinite number of real unknowns, since each b counts

tw1ce. If this system has a solution, a, and bl are then expressed in terms of
D. By means of expression (1.73), C and D may then be found afterwards. It

may be easily proven that system (1.74) may be solved. Therefore, a few remarks

will suffice, in which the assumption is made that this system always has one
solution.

To obtain practical results, we must approximate system (1.74) by a system
N The solution of the reduced system

‘is then only a suitable approximation of the solution of the given finite sys-
tem if two conditions are fulfilled. In the first place, the values of a bl’

computed from the reduced system, must be sufficiently stable, i.e., they may

‘vary only slightly when the number of equations and unknowns taken into con-

‘'sideration is increased. Further, the calculated values of ay and bl must

diminish with sufficient speed as the subscripts k and % grow larger, with the
result that the calculated stresses converge well. The extent to which these
conditions are fulfilled can only be ascertained by carrying out the calcula-
tions.

The accuracy attainable by reducing the system (1.74) is greatly dependent
on the parameter 8, which is expressed in the coefficients of the system. This
is physically clear. For a very thin plate (B > =) the solution of system
(1.74) isuassumedvto.be,«.ak >.0, bz + 0, so that from expression (1.73)-the._.. .

values in expression (1.34a) of the plane state of stress follow for C and D.
With great, but finite values of 8, an asymptotic development is possible in
which it turns out that all unknowns a B are of order 8~". Numerically, /22
it will be found that a; and b1 greatly predomlnate (Section 2.1) so that N = 1
can be satisfied. The physical meaning of this lies in the fact that the devia-
tion from the generalized plane state of stress for a thin plate is well approx-
imated by the first term of the Fourier series in the thickness direction.

For thicker plates, a larger number of equations and unknowns must be used.

1.8 Derivation of the Coefficients

Before proceeﬂihg to a general examination of equatioms (1.73) and (1.74),
we find it desirable to take a closer look at the coefficients which occur.
First a few simple identities are given. Thus, it is assumed that

2k27% ]
tixk = Su [1—'Azcothl + m} s
Artg A = Apcot A = —1, | (1°75)
Tttt = r)\ cot A 22 |
Vig = -_— — . :
Ik ulk' ! TR |

i
¥

20



W O

gl = —r® [Atg A +2(1—v) ]+ 2% 2, !
q(‘?) == r{® {)\1 tg A -+ 1], i (1076)
QP = —r® [Mtgh +2(1—)]. :

By means of relationships (1.75) and (1.76), from expression (1.72) we find

v = — 4 B2 A3 sin Ay (—l)ki_ﬂ-z___*_
(lzz—k2w2)2
a.77)
—1)" k2 72
+ 4X;sinA ( A —425 -
i i ey 3 (A 8) s( v+ (A% — K =) s”
iy = s’“’ (K(\ 8)—4), (1.78)
‘ /23
kx .
() — __4(__1)k)3 o
Vi (=D*Wusindi e " K(up), (1.79)
— . 1
i = 8 (— 1)k A;sin A /\2‘__‘1\_”2?'; v + %
L2 2 (1.80)
kg
+“X§j:1?;;€\ﬂK(Atﬁ)—-IL‘J
4¢(12) —_ Sln Al {K A.;B —-l} (1.81)
Then from system (1.74) we eliminate a,:
_ 1 o ‘
BT T HE Re 2 b, (1.82)
.so that this system is converted into
) . ' 48 1}k
Relzzl bo x4y - D,,z‘;z (k*zl)
(1.83)
Re ; .blez) =D 48v (—l)k ;
= ey T
_ ' (k=12..))
with
e T 5
(2) 4 i i
P (k=1,2..) | (1.84) |
e - 2) 3 Pka) 2 (I=12.) ;
e = ¢ — pi .

" The last simplifications are obtained by setting
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SERVS

48v C;

=D—— %
% =D Tosian (1.85)
124
|
[T ) k
H t(n)=1$k ('_1)
? Xix 4*31 Sin/\l ’ (1.86)
whereby expression (1.83) becomes
0 . 1 i
Rezi?l o "= k2 |
(k=12..) (1.87)
20
Re1£§1 o 1= 'S

Here cl is independent of D. If the two equations (1.73) are subtracted from

each other, we obtain an equation for D. It is found that

1
12+ es) Cy '
 — Re S S SUNS S A )
> B2 151 1\315111)\[ Wio Yio )

By means of equations (1.88), (1.85), (1.78), and (1.81), finally bg is found:

D=

(1.88) |

’,_).’1 - )

) —

s
b — ci/4 A% sin A

m (1 +v) 2 ¥ k) x
Tag, BT AR I oapnm W

while a, is defined by equationé“(1.89) and (1.82). The abbreviétioﬁ T

K Oug 1 ‘ (1.89) |

di = 4% sin ;. by = |

_ o (1.90) -
w (1 +v) v ®, K, (A B) 1 «
24y g+ 2 B Re 151 @ K: (M B8) A% i

still plays a role in the expressions for the stresses.

1.9 The Thin Plate

The coefficients of systems (1.73) and (1.74) are complicated functions of
_parameter 8, and it seems reasonable to investigate whether in extreme cases
the system can be simplified. As already noted above, for the thin plate [25
(h >~ 0, i.e., B > ®) the system will have the solution a = bl = 0, while C and

D alone will not equal zero (plane state of stress). The state of stress of a
thin plate, for which h has a finite value, may now be regarded as a perturba-
stion of this plane state of stress. Therefore, first of all we shall seek the
jsolution of systems (1.73) and (1.74) which may be written as an expansion in

powers of %; For this purpose, use is made of the following well-known asymp-
totic expansions [see (Ref. 20), page 3?4]

i ‘
/ :

‘ S e— / il -z ———33—. — 15 -

K. (z) l/ 57 © [ I+ 82 " g %—...}, ]; (1.91)

B 3

22



—_— T

) !z 15 105 ‘
K, (z) = . -z o Y I 1.91
2 (2) 1 e {1 82 %8 ...;] ( )

‘which are important when |zI is large and Iarg z| < %—w. From expression (1.91)

- we derive

1 15 1 :

By means of this relationship expression (1.66) is written as

15 1 ]

) — __ 9knl —3

pL 2knf —3 —— kWBJF...., |

P = kn, (B>>1). (1.93)

2

pi = (k"zﬁ) —knB— _i—+ .....
For the w%k coefficients, the following asymptotic series hold [26
. k? 2 7

iy = [ (—l)uﬁsmkz(—*kz 573 }

. 1 k? =?
—B [4(— 1)¥A2; sin A4 (X"z——-kz 71_2) (v + z\zl—kzwz)] -

. 1 k?#x?
—_— 18(— l)k/\lslnl\lm. (V +—‘-—>+ cere o

— A% — k272
{
w;;’: ——‘3 2vsin)u—_9v Slnhl'*".... ’
1
k=
2) — . 1\k a4, o -
pit ,3[4( 1)k A% sin A (Azz—k2w2)2}+ (1.94)
k=

+ 2(-—- 1)")»3zsinz\; S ,

(A% —K*m)?

. e . 1 k2 =*
vl = —ﬁ[‘“““”“m . <m)( i ﬁ)]

1 k2 2
—19(—'1)k/\151nkz< k"' )(V'!‘\ k >+,
'l -2

sinh L @>>1)

i
o Wi = —B. 4vsin A; —6v
Y é Al
!

The desired asymptotic expansion is written in the following form
" -

C=CO+ —_ ¢ +....,i ;

A (8 >> 1) (1.95)

(1)
D=D(°’+—DB———+....,‘
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ap = aﬁo)

e (1.95)
by = b{® +——;3-—+....

‘and then, together with expansions (1.93) and (1.94);:’.3 substituted in equa-
‘tions (1.73) and (1.74). If the right sides of these equations are transposed

.
" ito the left side, expansions in powers of %— result, which,when set equal /27

- ;to zero, result in a sufficient number of equations to determine the coeffi-
cients in expression (1.95). In this fashion we find

4

g 1 1 .
1 C® — — o — >
; z D 2(1+v)’
C® = 0, D® = 0,
2 ) (1.96)
C® = D© —=__Y _ po» —
3 31 o) D 0,
3 =al —aP —a® =0,
b = b = b®» = i3 =9

as well as
" 18, — 1k
W == e (1.97)

The coefficient b,El’) is solved by introducing the abbreviation
' i
pw — o ¥ (1.98)
¢ 1+v A.at Sin/\l ’

@
§
§
H

from system

k=1,2...) (1.99)

The first approximation is completed with the solution of these equationms.
We may proceed in the same manner when computing higher approximations. /28
. The following system

s§C® + v . 2usin Ay,

9 4(1+ ) DO

l
;
7

o
- w0 | (1.100) .
: 6C® —2(1 +v) D® = Re 3 b{V. 4vsina,.

o 2

o

3)

. ;1s found for C(3) and p{ from expression (1.73).

For ak(s) we find



16(— 1)k
W ET e W T T

o]
Re Z b(,'” )\21 sin /\1
I=1

1 k2x? )

\ /

while bés) with the abbreviation
o

b — 6va P

! 1+ v Xysina
is calculated from

@ 1 4
5) —
Re'l£1C£ (/\2;—k27r2)2 - kS #° +

1 ® ci? 1 k2 =2
+W Re 151 A (/\zl—kzwz) (v+ A% —k2x? ),

Re 3 o A 2
2 S T ey T T
1 ®© 1 5 1
-— (4) —
Ty Re 2 e m T W

(k=1,2...)

1.10 Stresses

i

;In’th13mway?~everwhigher*ot&er*termS"amE“obtained,but there is little———428--
.practical use in so doing because of the asymptotic nature of the expansion.
:Better results may be obtained by proceeding directly from equations (1.73)
and (1.74) for finite values of the ratio of hole diameter to plate thickness.

(1.101)

(1.102)

(1.103)

!

If coefficients C, D, a, and b2 are known, the stress values are deter-

fmined from the potentials by means of equations (1.18), (1.19), and (1.20) and
{added to solution (1.33). After some calculations, the following expression is

1
found for stress or

o _ L [y L D
e (1= ) e [
+6C 1* _D54(1;4~v) p 12 2 )
| r r B2 rt
& 2 *® (3K.(kmBr) . K, knBr))
_, —_— a k — ' (ks ——
:{ F 2 O TR ) PR, e |

6K (M Br)  MB Ki(Br)
K: (M 8) r KM B)

{(Aitg Ay +2(1—v)}cosrz—

+

+

—

—
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(1.104)

. o2} K ()q ,Br) '
A A + 2 22, P
1Zsin 12} 2vRelzlb1ﬂ A% Kz( ' B) COS)\;Z}.'

As is easily verified, 0. = 0 when r = 1. When z = 0 or z = 1, the formula

‘'does not become much simpler.

For stress c¢ we can derive /30 ~
o 1 1 1 1 7]
,f,’ =——2—(1+ = )—cos2¢ [—2—~+GC e
12v 22 2 S3 K; (k=Br)
—D . SRR
B2 r4 + 2 ké‘ a coskvrz( K, (k1r,3)
| ke KalknBr) ) o 1 6K:(MBr)
) K (k) § 7 R 2, 3 & K (M f)
" MB Ki(Mifr) ) U (1.105)
— K, o ‘B—)—s {— (Aitg A + 2) cos Az + ‘
+ Mizsin Az} + 2v Re 0207 b; cos Az %rLz %ﬂ—
=1 2 l
_MB Ki(Mfr) |, o Ke(MBr)
KA TR ) %]

When r = 1-this form is simplified to

; <_‘1L — 1+4cos2 |[—4(1+v)D+
T r=1

x + B*Re lél by A% tg Ay cos Az + 2(1 + v) B2 ! (1.106)

o o)
Re 3 b;A%cosdiz—B%Re
=1 1

I tv8

b; A%z sin Azz} .
1

When dl defined in expression (1.90) is introduced, this equation is to be

.written as

- |
(ﬂ_) =1+cos2¢[——4(1+v)D+ |
T r=1 f
2 A inA '
+5 R ¥ dl(cf; ;lz-—zjifh”>+
| =1 (1.107)
: 1 " o) Ccos Az .

. .From this we obtain the important value

. é31
. 1+ © A ’
(—GL)r_—_} == 1+c052¢[——4(1-‘-v)D+ 3 = B*Re 3 d; cot l]:” (1.108)
Jz=

I=1 A



Also of interest is the value averaged over the thickness

(_zw_> — 1+c052¢[ —4(1+v)D+
r=1

T
(1.109)
+ d B*Re % d: —2—].
2 1=1 A 1
" ‘For stress o, we find
L% cose | P S g, Kelupn
T cos 2¢ [ i Re 2 d; K. B)
, (1.110)
\zsind;z  coshz )] '
{ sinXy cos A; \J'
As may easily be verified, 9, = 0 when |z| = 1. If r =1, then
. . . )
( ‘; ) =cos2¢——i Re S‘ d; m_zsgnz\xz_ :
r=1 =1 sn A ‘ (1.111)
CosA;z )
cosh; |’
i.while the averaged value is
i _ ‘
a: g % d
= cos?2 Re ™ ;‘ (1.112)
( T )r=1 T2 =R

 For a very thin rplatei,w‘expre'ssions (1.95) may be introduced into the /32
‘stress formulas. If the expansion is not continued further than to terms of

‘order -;'—2-, the following forms arise
| A o ]
: ( T ){i} 1+COS2¢{ 2
| 1 N . (1.113)
: _ 0 4 cot A _ _ hid
FE Re lgl ¥ — 1 + cos 2¢ 2+ ik |
< ;”) =l+-c032¢[——2——
=1
f L o (1.114)
_L 1av % oL
Z’Use is made of
! o) " cot \; i 1
Re 2 clP——=——5—- (1.115)

“when deriving expression (1.113). This relationship may be obtained by means
“of identity
: k‘..’ﬂ,z 1

e Frov (1.116)

I b8

k
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which is derived from the first and third equations in expression (1.69) by
taking z equal to 1 therein and by eliminating the series

] 1

o —k

From expression (1.116) it immediately follows that

on kz’rz
Re bi.—4A%sinA ——m
k,lil ! Psin A (A% —k? #?)?

o0
= Re S by 2A% cos A;.
1=1

If the plate is very thin (B » «) {33
? ' _po R _&D" _ & 1
B, K B T 1+ B

may be written for the left side of this equation by taking advantage of ex~-
pressions (1.74) and (1.94), while the right side equals

Re | — 1?" h_l %Q c“)_cft*"tf
; . 1+v 34 121 ! A s

‘because of expressions (1.95) and (1.98).
Expression (1.115) is found in a similar fashion.

The average value of o, is given by

o — cos L 12y w1 (1.117{
( T )X‘:l co8 ; B‘.’ 1+V Re [El Cl /\.21 j ;
It should be additionally noted that for a very thick plate (B - 0), the
: g, T
jvalues of —2 and ﬁg. are known from the theory of the plane state of deforma-
’ T

tion. By means of formulas (1.109) and (1.112) it is thus possible to compute

< d
the magnitudes D and 8° ~\}" for B = 0.
=1 A

o d 2
Re £ —i—=——p& |

=1 B—0.| (1.118)

1—v

D= =

w—d
is thus found.

APPENDIX /34

Completeness of the Potential Function (A, Bli,?z) System Used

It is not certain in advance that the potential function (A, Bl’ BZ)
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'system used is complete, i.e., that with every solution (u, v, w) of expression
(1.1), potentials A, Bl’ B2 can be found such that the functions u, v, and w of

‘the (A, Bl’
-and (1.8).

Bz) system can be derived by combining expressions (1.4), (1.6),

When an agrbitrary three~dimensional problem is treated, it is in general
‘certain that the solution can be described by four independent potential func-
tions (Ref. 22), while for a large class of problems it has also been estab-
‘lished that description by means of three potential functions is possible
"(Ref. 23). Tt may be expected on physical grounds that, even though there is
;no mathematical proof for this, "in general" even problems which fall outside
‘the above-mentioned class can be described with only three-potential functions.
For an extensive class of problems, which also includes the problem formulated
in Chapter I, it is, however, possible to give a mathematical proof of the com-
pleteness of the potential function (A, Bl’ B2) system employed. THs class of

problems embraces the problems which pertain to determining displacements in
bodies which are convex in one direction. (A body is called convex in one
.direction if every rectilinear element parallel to the direction connecting two
.points in the body lies entirely in that body.) If one or more of the dimen-
sions of the body become infinitely great, the displacements at infinity satis-
fy certain conditions. In proving the assumption that the potential function
(A, Bl’ B2) system is complete, a central role is played by the following lemma

concerning harmonic functions —-- i.e., functions which satisfy the Laplace equa
ETEE. p— e e L

Lemma 122_

If p(x, y, 2) is a harmonic function in region D, it is possible to find
‘another harmonic function q(x, y, z) defined by

aq
— A1
s P, (A.1)

if one of the following conditions is fulfilled:

(a) Region D is convex in the z-direction.

N ! ]
®) If r=vx*+ y*— o,/ then (_a_P_> = 0 (r?).
zZ Jz=0

The proof of the lemma takes a course which is entirely analogous to the proof
that is given by Eubanks and Stermberg {(Ref. 23) for bodies convex in the z-

. .direction and finite in every plane parallel to the x-y-plane. From the given
. harmonic function, p(x, y, z) is first derived by means of

¥4
% = [p{xy, {)dL. (A.2)
o [+]
Function q1 satisfies 5
q:
0z P,




:and is thus a solution of

]
oz

jFrom this it follows that Aql is independent of z; this is expressed by
; |

i

: Aq: = h(xy). (A.3)
‘From expression (A.3) it follows by direct calculation that /36
8 9° ’
hCoy) = Aa =g+ ] (T _l
(A.4)

2°p’ ap | ,
+ay )dc-—(az )z=0. J

From condition b it may be concluded that h(x, y) may be integrated over the

whole plane z = 0. To function q; a function q2(x, y) is added which is de-
:fined by

1
qz=—-—2—ﬂ_—-fnfh(§m) log V(x—£) + (y —75)* dé dy, ‘f (A.5)

:which (Ref. 30) obviously fulfills
A g: = —h{x,y). (A.6)

Region B over which integral (A.5) is calculated is the intersection of plane
z = 0 with the body. It is now clear that the requred function q(x, y, z) is
igiven by o ’ + ‘ S
] qQ=4q qe.

' (A.7)

Note. The hypothesis may be extended to higher derivatives. If p(x, y,z)
is a harmonic function, a function q(x, y, z) may be found which fulfills

_o%q_
0z

‘on condition a, while condition b must be reinforced to

op — (01
(32 )z:O = 0.

The completeness theorem is now formulated as follows.

=p; Aq =0, (a.8)

i Theorem. 1In a body whlch is convex in the z-direction, a harmonic po~ /37
tential function (A, B ) system can be found for every solutlon (u, v, wy

1> B2
~:of expression {1.1) such that when ¢ —y =3 — 4y
! dA ~ @B, ¢ B, B, .
- A +al2n
“ 3y Tax T ®Tax T %3xez
. A.9
v—_ A 3B 2B B (A.9)
ox "0y cy E‘
B, 3 B. 2B,
w= 5z Y 52 teSg FE N
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-fand when r = - 'xz + yz - «, the following is true

u,v = O(r _I‘F)When e>0,

The proof of this theorem will be provided by solving equations (A.9) for the
harmonic functions A, Bl’ B2 with an arbitrarily given solution u, v, w of the

‘elasticity equations (1.1). First of all, B2 is determined from the relation-
ship

2B,

gy = —2(1—2v) T (A.10)
obtained by differentiating the first equations (A.9) with respect to x, the
second equation with respect to y, and the third equation with respect to z,
.and adding. Because €y is harmonic, B2 may be computed from the lemma.

Next, harmonic function B, is calculated from the third equation (A.9).

1
From the third equation (1.1) and from (A.10) it follows that /38
Al wee y 2B _ B\ _ o (A.11)
dz 02z ? ’

.so that B1 again may be computed from the lemma.

To complete the proof, new functions Q and R defined by
_ 0B, 9B, ey 92 B,
Q=u ox * Tox oxoz’

A.12
R — 3B, OB, @B (4.12)
= VT ey T % oy dyoz’

|
‘are introduced; from equations (1.1) and (A.10) it follows that Q and R are
‘harmonic. By means of the relationship ¢ —y = 3 —4v, the third equation
(A.9) and (A.10) follows by differentiation of expression (A.12)
23Q . @R
———— e —————— =0
Tx 3y ) (A.13)
- tfrom which it follows that Q and R may be derived from the z-component of a
-vector potential.

It is now assumed that
A(x,y,2)= [ {—R (§9,2)d¢ + Q(&,9,2)dy}
% (A.14)
z 4 oR )
--ofdé'l ‘{ng —‘E—-i-a—?*
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s( @R #Q .11 .
d§ + ———d
+s:!% acz £ 2Ct, "ls:l ] (A.14)
s !
In this f is defined as the integral along an arbitrary curve which lies en-
: s
)

‘tirely in the intersection of the body with the plane z = const. Further, the
‘integrations over %y and L, are integrations in the z-direction. It is neces-

'sary that point s, be selected independently of z. In order to show that this

is indeed the desired potential function A, we find by differentiation that /39

oA
Q = _af"
(A.15)
9A
R=-— ox ’
The derivative with respect to z is
aA z (3R 3Q
=/ (‘5:‘37)7“
(A.16)

$3Q IR
(5o (520

From expressions (A.15) an& (A.16) it follows that

SISV A W S | ) ) (A7)

so that function A is, in fact, harmonic.

In a simply connected region, this function is also unique. In a multiply

: . JA .
{ connected region, however, A is in general many-valued. Nor is Sz-then unique,
dA DA

9A 23A 3%A
but 3% By and 52 may well be.

It should be noted that in the proof the value v = %-offers no particular

difficulty, as is the case if the representation with four potentials according

. to Papkovich is reduced to a representation with three components of the vector

potential (Ref. 23). The proof given here is valid for all values of v in the

{ . 1

rregion -1 < v < 5
The theorem as formulated on page 30 cannot be directly applied to the

: problem of Chapter T hecanse the solution of this problem does nmot fulfill the

_conditions which are set in the theorem regarding the behavior when r > <.

"By splitting off the elementary part from stress distribution (1.33), we ob-

. tain a problem, however, to which the completeness theorem which is proven

here may be well adapted.
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., tion (2.1), we calculate a value pertaining to v

S~ :
&~
o -

CHAPTER II
NUMERICAL RESULTS FOR THE PLATE LOADED IN ITS PLANE

2.1 The Numerical Calculations

_ In order that conclusions may be reached in regard to the stresses which
‘are sought, the equations must be solved numerically. The computations con-
sist of:

(a) determining the eigen values;

(b) determining the necessary values of the K-functions;
(c) calculating the required coefficients;

(d) solving the algebraic equations;

(e) computing the stress magnitudes.

In the formulas, the magnitude v, Poisson's number, occurs. This number
plays an important role since, for v = 0, the problem is elementary, and com-
‘plexity is thus merely the result of v not being equal to zero. In the compu-

:tations, v is always taken to equal-%, the average of the extreme values which
are theoretically possible; the value adopted is furthermore a good approxima—~

tion of Poisson's number for steel.

(a) The eigen values are calculated for equation (1.53) by replacing this
‘equation by two real equations

sin 2u; cosh 2v; = — 24 .
(2.1)

cos 2y sinh 2v; = — 2y, :

cafter setting Xz =y, +iv, (ul, v, real)., The trivial (useless) solution :
ﬁuz = v, = 0 is disregarded. We restrict ourselves to the solutions for

‘which My > 0 and 2 > 0. From expression (2.1) it immediately follows that /41
sin 2u2 and cos 2u2 must simultaneously be negative, from which it becomes

~clear that 2u2 lies in the third quadrant and thus may be written

2u; = (2[-—— ; Yr—«€, (=1, 2..0) . (202)

in which €y is to be determined more exactly.

An arbitrary (small) initial value us given to e From the first equa-

0"

e Then a corrected value €

“is determined from the second equation (2.1). This iteration process quickly
converges. Table I gives a survey of the solutions for 2 =1, ... 7.*

* According to the computation of the eigen values by means of Hayashi's tables
of hyperbolic and goniometric functions (Ref. 26), it was clear that these
eigen values had already been determined by other authors (Refs. 27, 28, 29).

The results obtained here agree with the literature in the figures quoted.
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Because of the properties of the hyperbolic functions, it is also simélé
to posit an asymptotic formula for Az. For large values of % it is obvious

s

,;that

1 1
—_— T — rr{ J— \;—"-"—
A — (1 )T (41_1)7103\41 1) _|
l (2.3)

|

1 . .
+—5 ilog(4l—1t)m +.....

For a value of ¢ as low as 5, this formula gives 14.8541 + i 2,045, in satis-
jfactory agreement with the more accurate value.

(b ) The K-value computation extends not only over the real, but also over
the complex magnitudes. K(kwB) and K(KQB) occur in the formulas. With suffi-

‘ciently large values of B the asymptotic formulas, which here quickly lead to
‘a result, are always adequate. For small values of k, %, and B, tables were at

.our disposal which, although they were intended for calculating Bessel func- /42

tions with complex arguments, here, however, prove to be useful only for cal-
culating functions with real arguments. The functions with complex arguments
are determined by means of series expansions. The formulas used are once more |
summarized here. The asymptotic formula is :

3 5 j
K,(z)___ 1+ 8 % — g ° + ... | 2.6
K.(z) 15 L 105 »
1+ 3 zt 4 98 zZ2+ ...,

while the series expansions for Kl(z) and Kz(z) are

) ( z )14-21' =
Kie) = ——— 5 __2____3‘°g(%)+
Z  r=0- 1+t LS | (2.5) :
+ ;
_+_Y__l_rEI ._1__ 1 ‘{_: 1 '5 '
'E ) 1 (’z 242r , .
: 4 o2 5 ’
f K.(z) == —— - — > \2 510«7(—:-)+
: z 2 =02+ ! ( 2
: (2.6)
i 1 rL?2 1 & 1)
’ tr— — m?—_l m 2 mE::I m y N

“in which y represents Euler's constant (y = 0.5772157...). The abbreviation

_Kl(z)

K.(Z) — _K;E) (2.7)

“is introduced for calculating the K values, from which K(z) is determined by

K(z) = zK*(z) —2. (2.8)
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TABLE I

EIGEN VALUES AND K*-VALUES

k7
kofl k7 A K*(Az ) K* (k) K* (%))
1 3,1416 2,10624i 1,1254 —0,4875 —0,6637 —0,4012—i 0,1185
2 6,2832 5,35644i 1,552 —0,6637 —0,8019 —0,6354—i 0,0640
3 9,4248 8,5367+4i 1,776 —{0,7504 —0,8599 —~0,7373—i 0,0414
4 12,5664 11,69924i 1,929 —0,8019 —0,8916 —0,7937—i 0,0277
5 15,7080 14,85414+i 2,047 —{0,8358 —0,9116 —0,8301—i 0,0199
6 18,8496 18,0049 +i 2,140 —0,8599 — —0,8557—i 0,0150
7 21,9911 21,1534+ 2,220 —{0,8778 — —0,8745—i 0,0117
K*(A;) K*(32A,) K*(21;) K*(31))
—0,6273—i 0,1280 —0,7055—- 1 0.1103 —0,7654—i 0,096 —0,8347—i 0,0736
—0,7859—i 0,0496 —0,8484 - 1 0,0373 -—0,8825—i 0,0305 —0,9192—i 0,0217
—0,8520—i 0,0267 —0,5971—1 0,0194 —0,9211—1 0,0153 —0,9463—i 0,0107
—0,8869—i 0,0168 —0,9221- i 0,0120 -—0,9406—i 0,0093 —-0,9598—i 0,064
—0,9084—i 0,0166 —0,9373- i 0,0081 —0,9524—i 0,0063 ©0,9678—i 00043
TABLE IIa
*(1
VALUES OF XR,IE ) FoR g = 1/2
\;
1 2 3
k
1 ~—0,08377—Fi 0,16729 0,00989--i 0,03952 0,00546—i 0,00506
2 —0,011014i 0,02005 —-0,03102+41 0,03574 0,00506—i 0,01978
3 —0,00604-+i 0,00804 - -0,00004-+i 0,00440 —0,02092+4i 0,01995
4 —0,00372-+i 0,00441 —-0,002174-i 0,00865 0,00119+i 0,00349
5 —0,002514-i 0,00279 --0,00050-+1 0,00057 0,00014+i 0,00079
6 —0,00180-+i 000195 | —.0,000674i 0,00035 —0,000174i 0,00032
7 —0,001364i 0,00145 : —--0,00054-+1 0,00024 —0,00023+1 0,00017
4 5 6 7
0,00221—i 0,00135 0,00109—i 0,00051 0,00061—i 0,00024 0,00038—i 0,00013
0,00373—i 0,00324 0,00172—1 0,00097 0,00092—i  0,00040 0,00008—i 0,00020
0,00325—i 0,01418 0,00297—i " 0,00273 0,00147—i 0,00081 0,00082—i 0,00035
—0,016584i 0,01424 0,00{94—1 0,01160 0,00254—i 0,00227 0,00131—1 0,00072
0,001414i 0,00325 —0,01419-+1 0,01134 0,0013t—i 0,01010 0,00226—i 0,00208
0,00045+4i1 0,00072 0,00143+4i 0,00312 ~-0,01265+4i1 0,00960 0,00087—i 0,00909
0,00007+i 0,00027 0,000539+1 0,00071 0,00138-+1 0,00304 —0,01156+1 0,00842

143
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DeRNey

TABLE IIb a5
VALUES OF xl(z) FOR 8 = 1/2

|
. ¢ 1 2 3 :
: k i
3 l
i 1 —0,07396+i 0,20822 0,01022—i 0,04566 0,00599—i 0,00571 ;
; 2 —0,00124+i 0,02385 --0,04458-+i 0,07407 0,00630—i 0,03211 ‘
| 3 —0,00148+i 0,00909 0,008774-i 0,01097 —0,04475+i 0,05801 :
] 4 —0,00108+i" 0,00488 0,00117+4i 0,01729 0,01016+i 0,01235
H 5 —0,00078+i 0,00306 0,00197+4i 0,00136 0,005104i 0,00324
i 6 —0,00058+i 0,00210 0,00120+4i 0,00078 0.00286+4-i 0,00136
! 7 —0,00047+i 0,00167 0,000804i 0,00051 0,001824i 0,00073
4 5 ’ 6 7
0,00241—i 0,00149 0,00118 —i 0,00056 s 0,00066—i 0,00026 0,00040 -i 0,00013
0,00545-i 0,00502 0,00246 i ©,00145 | 0.00129—i 0,00058 0,0076 —i  0,00028
0,00499—i 0,03139 0,005%0 i €. 00548 |  0.00279--i 0,00164 G152 i 0,00068
—-0,04770-+i 0,05332 000319 -i GO3334 | VMI6E39 i 0,00626 000371 i 0,00190
0,01081-+i 0,01425 —005144 ti GUSISS | 00214--i 0,03602 OOV T 0,007 )
0,005904i 0,00377 00137 ki COIG22 V5548 i 005187 CoCTIo 003
0,00341-+i 0,00154 000658 i L0044 | wOIS3 Fi 00182 NS 00524
i
A number of K*(z) values are collected in Table I. /50
*(n)

(c) Coefficients Xg  are caleulated in various stages by means of the

‘K-values given in Table I.
This is done for B-values of /,, 1, 3/,, 2 and 3.
The results of these calculations are given in Tables IIa through IIj.

(d) System (1.87) and system (1.99), when B = 3/,, 2 and 3 are re-
duced to ten real equations with ten unknowns, while when 8 =1/, an expan-
‘sion into 14 equations with 14 unknowns proved to be necessary. The effect of
this is discussed in Section 2.2.

Table III contains the solutions obtained. C and D are also tabulated
ted f rom ‘_:{preasicn H 711\ nnd the magnitude
1
F = —— — —

=21 L) N »B o
e

(2.9)

“When judging the accuracy of the calculations it should be kept in mind
that here it is a question of values for correcting the classical stress magni-
‘ tudes which are rarely greater than 10% of the uncorrected. Accuracy to three,
or at least to two,digits is therefore considered satisfactory.
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The accuracy attained is determined by the following factors: Accuracy
to which eigen values Al are known, the rounding off of the digits, and the

systematic error from reducing the system of equations.

The imaginary parts of the eigen values are calculated to four places,
which is considered sufficient for the result to be attained. The correspond-
ing real parts of the eigen values are accurate to four figures after the deci-
mal point. Rounding off of figures, in general, plays no role since many deci=-
mals are always used.

The most important error comes from reducing the system of equations. For
thin plates the limitation to 10 equations suffices; for the case B = 1/2 it
was necessary to use 14 equations. For practical reasons this number is con-
sidered the limit, and the accuracy achieved seems, on the basis of the re- /53
sults obtained for the stress distribution, to be adequate (see Section 2,2).

A first impression of the accuracy attained has already been obtained by com—
paring the unknowns Cys eees Cg calculated from ten equations with the values

of these unknowns computed from 14 equations (Table IV).

As it appears, the stability of the first ¢, coefficients is reasonably

2
good. The small changes have little effect on the stress distribution. Of

‘much greater significance, however, is the reduction itself. It is then also
‘clear that the effect of the sixth and seventh term on the stress values is by
mo means to be neglected. From the values of ¢,, ..., ¢, it may, however, be

hoped that neglecting c_,, ... will bring no more great changes in the results

8’
‘obtained. This will be dealt with in more detail when the results are dis-
icussed (Section 2.2).
% It would be illusory to expect that mistakes in computation could be en-
‘tirely excluded in the extremely voluminous computations. The attempt is in-
deed always made, so far as possible,to include control calculations to reduce
‘the danger of computational errors to a minimum. As an example of such a con-
trol calculation, we would like to mention relationship (1.115) which is then
always used. The graphic presentation of results of intermediate computations
provides a check on the final results, which is effective in many respects.
System (1.99) for the first approximation of the asymptotic solution for
‘the thin plate is reduced to 10 equations. The solution is summarized in
Table V. The accuracy achieved here is great, as is also clear from comparison
of these results with the regults for computations involving only two equationms,
" ‘which are also given in Table V.

2.2 Discussion of Results

;N, . The principal results of the computations are shown in Figures 1 through
- 110,

In Figure 1 the magnitude D, the coefficient of plane state of stress
(1.31), is calculated as a function of ratio B of hole diameter to plate
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A—= 0 0.5 1.0 X 2.0 25 3.0,

Figure 1

Coefficient D

thickness. Here we make use df-ihe known value of D for 8 = 0 given in expfes?
sion (1.116). It is apparent that it is possible to interpolate the value /54
of D for the 0 < 8 < 0.5 region with reasonable accuracy.

Figure 2 gives the connection between the value of normal stress in the
direction perpendicular to the plate surface (cz) averaged over the plate

thickness along the edge of the hole and ratio B. Without any calculating, it
’ - G,
z

‘can immediately be seen that = 2v = 0,5 when 8 = 0. From the graph it

T cos 2¢
is clear that for the average value 6; there is no need to carry out the ex-~

traordinarily cumbersome computation in the 0 < B < 0.5 region. Further, it is
apparent that the deviations from the plane state of deformation or the plane
state of stress are important in the 0.25 < B < 3 region.

s interesting to point out here the especially good agreement which
exists between the value (-0,167) when B = 1 and the value found in the litera-
ture (~0.169) which Green (Ref. 4) has computed by another method.

Finally, to give an idea of the size of the region in the radial direc- /56
’tion where the deviation from the plane state of stress is significant, Figure
- '3 represents the course of the averaged normal stress 3; with radius r for the

single value B = 1. It is clear that at a distance of twice the hole diameter
the plane state of stress is approximately unperturbed. It may be expected
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-z T, - ?'F 0,9z :
T<os 2¢ -

? 04 r is tensile stress at infinity
' B = plate thickness
o= calculated points :
o = value calculated by A. E. Green
0.3 ——— asymptotic approximatiod

‘ i 1 j 4 |
g—=—0 ! 2 3 ;
Figure 2 155

Average Value of o, on the Edge of the Hole

that this perturbation penetrates farther in the radial direction when the B
values are smaller. The perturbation region is more restricted to the vicinity
of median plane z = 0 as the radius becomes larger.

0.20 ~ ;
= | i =_ 1 f !
-0y i g, = z—h/ﬁﬂl ;
Tcos 2y A=l h |
: t t r is tensile stress at infinity
. 0.13 hole diameter ;
: B= : ;
: l plate thickness
® = calculated points
, |
0.10 - i E
|
!
]
i oosl
q !
= i ! | \\\\\\w
! o] : : )\ﬁ\ 5
b rF— 1.00 1.25 1.50 1.75 2.00

Figure 3

. Connection Between 6% and Radius r for g = 1
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Path of o, on the Hole Edge Over the Plate Thickness

Figure 4 gives the distribution of normal stress g, on the hole edge over

the plate thickness for various values of B. The most important conclusion that
can be drawn from this figure is that in the middle (z = 0), the limiting value
2v = 0.5 is already almost reached when B = 0.5. The course of o, over the

plate thickness is also used as a criterion of the accuracy of the numerical
calculations; we will return to this when discussing Figure 10.

There is outstanding agreement between the value of E% found here when /57

B=1and z =0, i.e., -0.262, and the value of -0.268 given by Green (Ref. 4).
The slight divergence is probably to be attributed to the effect of truncating
the series,

Figure 5 gives the greatest values of normal stress O, which always occur
' . . . 1 .
essentially on median plane z = 0, as a function of re This figure may be com-

“ ‘pred with Figure 6 from the work by Sternberg and Sadowsky (Ref. 6). It is

© jevident that the curve calculated here lies closer to the curve given by Stern-
berg and Sadowsky when v = 0.20 than to;the similar (interpolated) curve when

v = 0,25, This can be simply explained from the lesser accuracy of the approx-
imation method developed by these authors in comparison to the method used here.
‘Qualitatively Sternberg and Sadowsky's results are, however, especlally elegant
and their method has the advantage that it can be easily adapted to various
tvalues of v.
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Figure 5 /58
Value of o, Along the Hole Edge on the Middle Plane

(a) - Calculated points; (b) - Limiting value when’
B = 0; (¢) -~ asymptotic approximation.

The average value of the tangential normal stress o, over the plate thick-

¢

.ness on the hole edge is represented in Figure 6 as a function of B. Here by

means of Figures 1 and 2, it is possible to compute the graph down to 8 = O,
since

( o ) =142 —4(1 + v)Dcos2p.
=1 T )= (2.10)

It is evident that the deviations from the value

—ay

% __ o
T cos 2¢ ’

‘computed either from the theory of plane stress or from that of the plane
'state of deformation anaonly slight for ali values of (3. The maximum of ex-
‘pression (2.10), which is 2.034, lies between 0 and 0.5. The elementary /59

. ;theory obv1ous1y suffices for the average value of t?e normal tangential stress.

T ‘It should be noted that when B = 1, the value

(...,...-.

%% . .0276 found by
T cos 2¢

Green (Ref 4) is in very good agreement with the value of 2.0270 calculated
“here.

_Figure 7 shows normal tangential stress o, along the hole edge on the

¢
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Figure 6
Average Value of ch) on the Hole Edge

(a) - Calculated points; (b) - (see definition [1.55]).

external surface as a function of 8. When 8 = !/, this stress value is found
to be 2,64, Between B =0 and B = 1/2, the value is extrapolated and repre-
sented by a dot-dash line on the figure. More than qualitative significance,
however, cannot be attributed to this extrapolation, since larger errors may be
expected in the above values than on the above graphs. This is already appar-
ent when we compare the value when B = 1 with that given by Green, who computes
this value from a truncated Fourier series which for z = 1 has the form

£ il
T )e=1 = 1+ cos2p |
z=1

[—2,0276 + 0,1047 + 0,0496 + 0,0271 (2.11)

+ 0,0168 + 0,0113 + 0,0081] = 1 + cos 2¢(— 1,810),

while the value calculated here is found from /60
%-) ; = 1+ cos 2o [—1,9854 + 0,3017 {0,9158

zZ =
r—=

/

— 0,0266 — 0,0519 — 0,0337 — 0,0169}] (2.12)

= 1 + cos 2p(— 1,748).

. It is obvious that the great discrepancy is for the most part caused by trun-

cation of the series. If it is assumed that series (2.11) and (2.12) are both
continued in a regular fashion, an improved estimate can be made. The figures
which are thus found are -1.79 and -1.77 for expressions (2.11) and (2.12),
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Figure 7

Value of 0&2) Along the Hole Edge on the External Surface

(a) - Computed points; (b) - Value calculated by A. E. Green;
(c) - Most probable value; (d) - Asymptotic approximation;
(e) - Extrapolated curve for B < 1/,.

respectively. From this it follows that the averaged value (-1.78) of Green's
results and those found here may be considered quite reliable.

The effect of truncating the series for B = 3/, is smaller, as can be seen
from the expansion

( ?I? )z _; = 1+ cos 2 [—1,9963 +0,3031 {0,6597
r=1

— 0,049 —0,0355 — 0,0186 — 0,0083}] || (2.13)
= 1 + cos 2¢(— 1,830),
which justifies the conclusion that the error in the stress concentration
sought will certainiy not be greater than C.01.
D It is more difficult to estimate the error in the quoted value when B =
= 1/2. The truncated series used to compute this has the form
-"T”’-= 1 + cos 2 [— 1,95798 + 0,2976 {1,2291 + 0,034 1
(2.14)
—0,0858 — 0,1435 + 0,0746 —0,0113 —0,0163}] ==
= 1+ cos 2p (— 1,636).
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Figure 8

Value of cgz)Along the Hole Edge on the Median Plane

(a) - Computed points; (b) - Value computed by A, E. Green;
(c) - Curve interpolated when B < !/,; (d) - Asymptotic
approximation.

Normal tangential stress %y along the hole edge in the median plane [61

is shown in Figure 8. As is to be expected, this normal stress has a maximum
which clearly appears for a value of B between 0.5 and 1.0. The value of
2.100 calculated here when B = 1 is again in excellent agreement with the
value of 2.10 given by Green.

Figure 9 gives the course of the normal tangential stress on the hole
edge over the plate thickness. It is clear that the points of intersection of
2)

-G

T cos 2¢

tively closer to the outside as the value of B increases, i.e., measured in
units of the plate thickness. Measured in terms of the hole radius, these in-
tersection points lie closer to the inside with increasing values of B. This
outcome is in complete agreement with what may be expected on physical grounds.

the curve with the straight line = 2 in elementary theory lie rela-

Finally, Figure 10 gives some insight into the accuracy achieved with /62
the computations carried out when B = 1/2. The computed values of normal
stress o on the hole edge lie on a smooth curve neither when ten equations

-are taken into consideration nor when the number is expanded to fourteen. The

. ‘wave nature of the latter improved solution is noticeably weaker. The noted

 "solid curve in the figure shows the path estimated from the calculations per-
~formed. The points calculated by means of 14 equations deviate from this
curve by 47 at the most.

2.3 Conclusions

A few conclusions may now be drawn on the basis of the computational
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Course of 0(2) Over the Thickness Along the Hole Edge

¢
results,

In the first place it is now possible to determine the accuracy of the /63
theory of the plane state of stress. The computations are, to be sure, re-
stricted to a circular cylindrical hole, but it may be expected that the con-
clusions drawn from them have a wider scope. It is then clear that the theory
of the plane state of stress is in general an excellent approximation. The
essence of the situation is that normal stress g, deviates greatly perpendicu-

lar to the plane of the plate which is assumed to be in plane state of stress
zero, but this stress is relatively small. The most important stress, that
is, the greatest value of normal tangential stress, is excellently approxi-
mated by the theory of plane stress: The stress concentration factor in the
middle of the plate (where the greatest stress occurs) is,with the most un-
favorable hole-diameter/plate~thickness ratio, no more than 3% greater than the
stress concentration lactor 3 of the two-dimensional theory. For this reason

- the stress concentration factors which are computed by means of the two-di-

' mensional theory may be considered reliable for plates loaded in their plane.

On the exterior planes of the plate the deviation of the stress dis- [64
tribution from the one according to two-dimensional theory is larger. The
stress concentration factor can fall 10 to 15% below its classical value in
this case. This outcome is particulary of significance for determining re-
sidual stresses with the Mathar-Soete method. We will return to this in
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Figure 10
The Value of g, on the Hole Edge for B = 1/,

(a) - Computed from 10 equations; (b) - Computed from
14 equations; (c¢) ~ Estimated exact path.

Chapter V. It suffices here to remark that this deviation from the two-dimen-
sional theory quickly disappears with increasing distance from the hole edge.

CHAPTER TII
THEORY OF A PLATE LOADED IN BENDING /65

3.1 Introduction

This chapter will deal with the bending of an infinitely extended iso-
tropic plate with a cylindrical perforation. While in Chapter I, only those
solutions were noted which were symmetrical with respect to the thickness
coordinate, now the antisymmetric solution is sought. Because of the great
formal similarity between the theory in Chapter I and the theory to be elabor-
ated here, the developments in this chapter may be kept somewhat shorter.

The system of coordinates is set up in the same way as in Chapter I, and
the problem to be solved now is formulated by equations (1.1) with boundary
conditions (1.21) and (1.23), while boundary condition (1.22) is replaced by

g T—;——: re = oy = 0, for x'— =. (3.1)
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The loading moment M

o Per unit of length at infinity is

+h
My = [oyzdz — —g—Thz. ‘ (3.2)
Y :

3.2 Elementary Stress Distributions

We start with the solution for the plate without a hole, in wich g, = T%

and all the residual stresses are zero. In cylindrical coordinates we have

';: = ; ; (1 + cos 2¢),
o 1 z
—,Iq.’—- =5 T3 (1—cos 2¢p),
. (3.3)
Ty z .
T(P ———2— T (sm 2¢),
O = Trz = Tpz = 0.

=
The remaining solutions are derived from the potentials., The Laplace /66
equation in cylindrical coordinates (1.25) is

o 1 of 1 o 0%
cr? + r or + -r? cp* + 0z? =0.l (3.4)

First examined is the. stress distribution corresponding to B2 =cyz log r,

in which the set of constants o = 1 - 2v and y = -2(1 ~ v) defined by expres-
sion (1.12) is now used. From expressions (1.15) and (1.16) it then follows

that -
o z
2G—=c1.——2(1———v) s
a i
56 = 21—y —, (3.5)
O3 == Tz9 = Trz = Trgp — 0. N

Then the stress distribution is studied which belongs to A = cy —%7 sin 2¢;

from expression (1.I8) it then follows that /67
Or N e Z ]
2G Co.— U " COS 2y,
~2Ez;~= c:.6 i cos 2y,
0 (3.6)
oy =— U,
;qa = Cz 1'13 sin 2,
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Trz 1 ' i

3G G-~ —cos 20,
Trp : | (3.6)
2G == Cz-—-—G " sin 2¢'
With potential Bl = c3<_j%_ cos 24, a third stress system /67
r
I — ¢ Z_ cos ]
2G T
2%6 = c3.—6-£—cos 25,
Oy = 0. (3.7)
—;%';— = cy.— r23 sin 2¢,
Trs 2
'5G =G cos 2¢,

T"p

2G

z .
== ¢c3.6 ——,— sin 2.
r

is found by means of equations (1.19). It is noted that a suitable combina-
-tion of expressions (3.6) and (3.7) provides a plane state of stress.

A solution of expression (3.4) which will also be used is /68
B, = ( 322 -l-—:;—) cos2p, meta=1—2v eny=——2(l—v).i‘
|

From this the stress distribution

or z 12vz ]
G = [12(2—v) o r: } cos 2¢,
o z 12z
7&— = C4 [ — 12(2—V) I'* - r2 J Ccos 29’,
o, = 0.
Ter___ zZ_ (3.8)
G = G- 12 = sin 2¢,
Tz z:
o= Ce—12 —— cos 2,
T e 1200 — ) B 61— )2 sin2
2G % < e \ / 2 .

follows. The following choice is now made for the constants C1s €95 Cgs and

Cl}:
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o T 1 a?

2G #(1=») h ’ |
c,=%(: 2C — ahD),
“= = 2TG 112 ;2 D,

= |

in which C and D are to be determined still more exactly.

Superposition of system (3.3), (3.5), (3.6), (3.7), and (3.8) now

gives the elementary stress distribution

o0 1 z a? z (1 7]
IR P -
at a%h? va a%z®
—6C r‘-+D(6———~+ 22 );
T =3 h (1+ 2)+c05250 h ? 5 +
at azhz a2 a®z? )
- +6C = +D (-—-6 = + = + (2—v) = ) S,
o, = 0,
Toz . a? 2? h®
— - = sin 20 b D ( S ),
Tre a® 2* h*
T = cos 2¢ i D ( = .__;‘?),
Trg . z | 1 at
T = sin 2¢ B (-———-2 —6C ~ +
a%h? 1—v a2 a?z®
+D(6 T = —(2—_v)_r* )%

(3.9)

(3.10)

|

The stress distribution (3.10) satisfies the requirement that the

' plate's boundary planes (z = +h) be unstressed.
‘h

37 0, the boundary loads along the edge of the hole are small
1—3v
C= 12(1 +»)°
—2
D = 1+

For a thin plate, i.e.,

if

(3.11)
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and although the boundary loads o and Tr¢
2

hf’ Ty along the boundary is of order %. Nevertheless, this elementary stress
a

are of the order of magnitude /70

distribution canno? be considered the limiting case which is approached by the
stress distribution if %’+ 0. 1In order to show this it is noted that the
(small) boundary loads Tz together form an equilibrium system along the whole

boundary when r = a. On the other hand, they also cause the plate-half
0 < ¢ <7 to exert 'a torque on a plate-half 0 > ¢ > -7 having the magnitude

Fdp [ dz.ats 6 T (3.12)
; -jo go_fh z.a%sinp. -r”—-—g(l—'l:vv)v. .ah® .
This torque is transmitted through the vicinity of the hole. The corresponding
bending stress has an order of magnitude defined by equation (3.12) divided by

ahz, the resisting moment of a flat strip 3/2 a wide, i.e., of the order of
magnitude T. The disturbance of the elementary stress distribution (3.10),
which is coupled with relief of boundary load LI consequently results in ex-

tra stresses (o re’ or) which are of the same order of magnitude as bending

¢ "

stress T at infinity.

Just as in the tension loaded plate, non-elementary stress distributioms,
which make the edge free of stress, are added to the stress distribution
according to (3.10). 1In contrast to the tension-loaded plate these non-ele-
mentary stress distributions are here already essential for a very thin plate.

3.3 The Eigen Functions v /71

Just as in Chapter I, it is also possible here to find stress distribu-
tions by means of potentials A, Bl’ B2’ which leaves the boundary planes z = +h

free of stress. Moreover, we would like to find solutions of expression (3.4)
of the type ( ) %)
__ cos Az s cos 2y
f(r, ¢,2) = K.(Ar) ( sin Az | 2 sin 2 s (3.13)
From system (3.10) {it follows that the choice of cos Az or sin Az for the po-
tential functions must be donme in such a way that O o and T become

¢’ GZ’ r¢
antisymmetrical functions of z and L and 1, become symmetrical functionmns.

¢z

For potential function A, we now choose

2
A = g; K, (Ar) sin Az sin 2p, | (3.14)
It follows in accord with expression (1.18) when |z| = h, that
o, = 0:
To: a'.’AZ , .
L L K’ (Ar) cos Ah sin 2, (3.15)
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Trs a;z\ - K,(Ar) cos Ah cos 2¢.] (3.15)

'
{

The boundary surface is unstressed if parameter A is so chosen that cos Ah = 0,
thus

N k'

7 h (3.16)
|
with k’==k-+u—%—u (k=0,1,2...) | (3.17)
By linear combination, we obtain /72
’
L K, k'»r
A — T3.2 0 h k'?rz

TR, E, M iy g s .18

0 i |
(%) |

Potentials B1 and B2 are similarly treated. If it is assumed that

. Ta? .
B, = B, G K:(Ar) sin Az cos 2¢,
(3.19)
T 2
B, = B,* Ta@_ K. (Ar) sin Az cos 2p,
from expressions (1.19) and (1.20) when lzl = h, we derive
;f = *=a’cos 29 K, (Ar) [—B,"A%sinxh —
—B,*A*h cos Ah],
T|pz 2 a2 ! X v
T = — s 2¢ K;(Ar) [Bi*\ cos Ah ~
+ B,*Acos Ah — B;*A%h sin Ah], (3.20)
TI': - = a%cos 2¢ K;'(Ar) [B,*A?cos Ah + B,*A%cos Ah —
— B;*A%hsin Ah].
For all values of (r, ¢) these stresses are zero if
B,*sin Ah + B;* Ahcos Ah = 0, -l | ( )
' 3.21

"+ 3 b H ) | - A — N
B,* cos Ah + B;" (cos Ah— AhsinAb) = U, _j

The preceding system has solutions differing from zero only if the determinant
is zero, i.e., when )\ satisfies the equation /73

sin2Ah—21h = 0, (3.22)
while the relationship between Bi and B; is then defined by

B," = — B.* Ah cot \h. (3.23)
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Eigen value equation (3.22) again has a four-fold infinite series of solu-

tions.

If Az is an eigen value, then -}

X

[ AS A

, and —Xk are also eigen values.

Here, too, the examination may be limited to the eigen values for which

By linear combination, we obtain

on
A

Bl == ‘i—G— Re l‘;l b[
Ta? ®
B — o Re 3

=]

Rez

A >0
Im l

{(— Ah cot kzh)

_I(g(/\zr

' Kva)

K.
Kz(Ala)

(Air)

-’ -sin Az cos 2

)— sin A;z cos 2;.

de.

(3.24)

(3.25)

After introduction of the dimensionless coordinates, in accord with expression
(1.52), the system with the eigen value equation (the asterisks are again left

off) becomes

'I'a.2 on Kg(k’ﬂ’,gl')
A = —— LT AT
2G ,Eo * Ko (K'7RB)
Ta? ®
B, = 2—2— Re 121 by (— A; cot A;)
K, (A:8r)
K. (Ai8)
e - Ta? 0 Kz()tzﬁr)
B.=3c R 2 bxam)
sin 2A1 B 2/\1.

3.4 Stresses Along the

Boundary r

1

In order to be able to fulfill the boundary conditions for r

sin k'#z sin 2¢,

-

sin A\;z cos 2¢,

sin Az cos 2¢,

? (3.26)

1, the /74

stress system (3.10) and the systems derived from expression (3.26) are super-

posed.

—‘-’T' = ; z(l—:2>+c052¢.z3;—-—603—4+
+»D(—%¢~+7£F-(2-ﬁ-ﬁ%r)g,
—%’——: ; z<1+ = >+cos2¢.zg——;—+
+6c; +D({f—§%ww2—ﬂ ;;>$
o = 0. |
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In dimensionless coordinates, system (3.10) becomes

ol

(3.27)



J{;‘— = sin 2p —£3~(22 —1), |
’,'Ir,' = cos2<p—';)rT(zg—l),
—%?—=sin2<p.z;—— _;——60-;} +
? T

When r = 1, this gives the boundary load

o® (1 6 2 T
2 D .

T - B (Z—I)J

s SO Y S = 6 ey 2V
T ( 9 6C+D< 5 +,82 (2 V).32>$’_

where the superscript (2) has the same meaning as in expression (1.55).

means of the expansions which are valid in the -1 < z < 1 range

@ (—1)¢sink”
z=2 3 (—l)(,f’fh".(—lszgn,
k=0 ™ - =
— 1)k ’
1 = —4 °§°: g_l)i)ﬁz,’ (—1<z<1),

v <o k"33

|

‘—1)%sink’rz ‘
0 k22 -

22 =6
k

I8

(—1)%sin k'rz

[o o]
'—mkgo——?;r—ﬂ(—l§z§lh

we can write the following:

o = § (—l)“sink’:zS . —l?k: ;
T k:O (k.‘—‘ k_ﬂ-
6v
2v +———
B? 12(2—v) )
+D ( 2q2 + ﬁ'—’k'*;r_‘_)\ ’
W 4 R,y coskinz
T T T P T e

(3.27)

(3.28)

By /75

(3.29)

(3.30)

(3.31)

(3.32)
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@ o . 1 12C T
!r;" _=k§0 (——I)ksmk'n’z 3—"{;};2‘_ k’z’rz +
6v \
fp (U=t 122—w) )
k’21r2 BZk 't s

By means of potentials (3.26), the other stress systems may also be

-t

derived. After some computations, it is found that when r =1
2 -
<) o] [~ .
= S ap{" sink'mz+Re > biq{Vsinrz+
T =0 1=1
=0}
+Re > b Mizcos Az,
1=1
(2) 0
I —p S ap® cosk’wz +
T K=0
0 0 .
+ Re X big!® coshiz+ Re El bir{® Aizsin Mz |,
=1 =
@ e @ )
Ty 3 ap® sinkrz+ Re Y biq{® siniiz +
T = 1=1
jo.0]
+ Re E b;r‘,a’ )\lz cos )&12,
=1 _

in which the following

(1
qy

q'('.')
9

Further computations take a course similar to that treated in

58

abbreviations are used
P’ = 2K(K'7f)—2,

2y — 1.7
Px == k"}

o
p == K(K=B) — &132)_ 4

= (2(1—v)—Arcoth;) (—K(Ag8) +4) + ] !

+ A%8%(2 — Ay cot Ay),
= M (1—A;cot A;) K(A8),

= —2(2(1 —v)— Ajcot A;) (K(MB—1); j

(3.32)

/76

——

(3.33)

(3.34)

(3.35)

(3.36)

Chapter I.



Stresses (3.33) are expanded in series with respect to sin k'mz or cos k'mnz /77
and, together with stresses (3.30) which are assumed to be zero, are set equal
to zero by setting all Fourier coefficients equal to zero. This results in

the following system of equations

(—1)*a,p{™ + Re i@,l bigll + Cmy + Dl + QL = 0,
=
(—fap® +Re ¥ b+  +Dny =0, |
=1 | (3.37)
(—Dap®+Re X by +Cm+Dnl® +QF = 0,
1=
(k == 0’ 1’ 2’ ) =
in which the newly introduced quantities are defined by
k"2#?
51— 2)3, cos ) _
ll/lk 413 /\ 1 COS \l {Azl_—k!gﬂz)g T ‘
1 k’2x?
—4A;C05Alm . [V‘{“Azl_k,;;z—‘] . [K(Alﬁ)———-}], ‘
- K'n
¥id = 4rA%cos)y _(F::k'z;zjz' K(a8), (3.38)
= —8Xxicos\; L —.—[v+ |
Xzz——-k'zw" \
k'21r2
+ m] (K(MiB) —1]; |
|
(k=20,1,2..) ‘
(I=1,2..) |
—12 -
my K'%g2 ’
6v .
ap = |2 E  B22) | 118
T B
4 1 !
nl‘tz) = Bg kl31r3 L]
6 (3.39)
(3) —(1—v) +—l; 12(2 —v)
n B + 21,744 2
P Ak
1
Qk‘l) = klzwz 2
.
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;
Q8 = | (3.39)

From the second equation we have

(— 1)k
Ay == —.___.(2)__8 Re § bl‘rl’%f;’ -+ an'-’) 2 ; (3.40)
wherewith the remaining equations are converted into
jo o} p(l) b
Re > by +Cmg+ D (n,"” —-—————-p:;) nk‘”) + QM =0, ||
= k f
(3.41)

Re % b; ¥ + Cmy + D [n{® __Pﬂ 2 ) £ O =
k K 7 nk——-p n, Q== 0,

{2
= i’

(k=0,1,2,...)
where .ng_

Y (1) Pfx“
= J, (1 o
Xix ¥ix —“p“—. SN

{3} (3‘42)
B = =P _,

A simplification in the numerical calculation is obtained by introducing

e Al 1 Y S R 1t e z.(n)z —l(ll‘l‘) .
e 4A.SLCOS/\1’ (3-43)
b= S
4A31coshl) (3.44)

by which the system assumes the following form

o] (1)
Re ¥ cmw)+Gm+D<@W—%q@)+Qp=0
=1 pk-, ’
3.45
Re % c; z:r::) — Cm“ +~D (néd) _— p_{“a_),n:{m ) 4 Q,‘,:“ — 0 ( )
(=1 Copy : '

(k=0,1,2,...) _J

Just as in Chapter I, the problem is now reduced to a twofold, infinite sys-
tem of equations with twofold infinite unknowns C, D, Cys Cgs wee For prac-

tical computations, system (3.45) is truncated to a finite sysiem. The gener-
al remarks of Section 1.7, in regard to the approximate solution of system
(1.73), (1.74), are of similar pertinence here. It must, however, be noted
that system (1.73), (1.74) is not analogous in structure to system (3.37).
While it is clear that system (1.74) is to be interpreted as equations to de-
termine coefficients a b2 expressed in D -~ after which expression (1.73)

is used to calculate C and D -— a similar interpretation of system (3.37) is
not obvious. Undoubtedly, this difference is related to the chosen type of
Fourier expansion over sin k'wz and cos k'nz, where now, in contrast to
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Chapter I, the value k = 0 occupies no particular place.

3.5 The Thin Plate /80

If, in the extreme case of the infinitely thin plate (B + =), we set cy

equal to zero, system (3.45) degenerates into two equations for C and D with
the solutions
1 —v 2

C=G+y P~ —3+v ,‘ (3.46)

The pertinent stress distribution agrees with the solution determined by Goodier
for the classical plate equation involving a plate with a circular hole (Ref. 8)

It is clear that for a plate of slight, but finite, thickness the solu-
tion is to be taken in the form of an asymptotic series. In this asymptotic
expansion, it is advisable to proceed from system (3.37) whose coefficients

plgn), wéi), n=1, 2, ... are developed as follows:
15 1 7
(0 KB — 2
Px 2k"=B 3 B + ...,
i = K'm, . (3.47)
(K'=B)? ,
R e P = —- wzﬂ' —krB——g——-F....,
k’2p? .
= 82,423, cos A;. _——‘(Azl—k'_ﬁzwz)z + ...,
14 i
;z'=—3.4»;cosx,—k”,__—+,,_, i (3.48)
(Azl_kzﬂ_z)z ’ ;
1 { k"?x?
5(3) — 2 —
(,Iﬁk B.8A% cos A (X";—k'z‘n'z)\v + /\21—k'21r2)+ |
It is now immediately evident that the first terms of the desired asymptotic
expansion are
P i | /81
NS e .
k B ,83. T,
blm) b,’“
b; = S
1 & + & + ...,
(3.49)

Ccw
C=CO+—__ 4
B

D
D=D@®+___ +
B

Substitution of this into (3.37) and ordering by ascending powers of —;’- leads
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to the equations where k = 0, 1, 2, ...

12C® —2,D® — (3.50)
—2K'r (—1)ka® + Re X g K
T ( ) ay Re I.zs:{l 4 bl ) /\,31 Ccos A; ()\21 __k'27,:‘.")42" — (3'51)
12 Cm 2. DM
— T2z ‘—:._".'Mz— = Or
W nT
(_l)kal(‘z) + Re 30: —4 A cos A bl(S)—_I_h__ 7]
1=1 (A% — k)2
(3.52)
4 (0)
~ e DY =0,
(—1)*a® +Re $ —4aycosnbp 4 ]
1=1 (A?r —k"*x2)?
iR 2 3 . : 4 (3.53)
© E AN e MO (e — e DV = 0,

2(1—v) Dy _ 2 r 182

24
(~1)*af 4 g0 4 20— -
- k"t k't ’ k'ix (3.54)
2

(—D¥a 4+ p—(—D*a® +

24 2(1—v) (3.55)

+ W cw 4 _1?* DM —= Q,

,n,vl

By means of (3.54) and (3.55) aéz) and a£3) are expressed in C(O), D(O), C(l)

’

and D(l).
ap = =D 4 9800 4+ 2(1— ) D0
kK k"ﬂ‘ i (3.56)
(3) (— 1)k 1) ; my 2
{73
4. (— 1)k (.57

—_—

.‘:;3_5__,[1 ~12CW + (1 —V)D""],
A

Expressions (3.56) and (3.57) are now used to derive three equations, in
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which only c(O), D(O), C(l) and D(l) occur as unknowns, from eqﬁations (3.51),
(3.52) and (3.53) by eliminating bl' Together with expression (3.50), these

equations determine the unknowns mentioned. Elimination of b2 is achieved by
means of the identity

% i
k‘;o—(_/\—i:klz‘ﬂ'z)z- - 0) (3.58)
which is true for all eigen values Az. Identity (3.58) is obtained from the
series expansions in the interval -1 < z < 1 for all arbitrary values of A

Acos A

e
in Az == AN (— Y1 TP ’ ‘ 3.59
sin Az 2 ( ) N e sin k'zz, | ( )
0 A? £ k2n?
Azcosdz = 3 2(—1)*AcosA |—— -, . +
2, ( Y& X cos [Mh—kﬁﬁ" (3.60)
AtgA -
+ —Xz’_'-_ k’%:—' ] sin }\ nZ,
by chosing z = 1 and making use of the eigen value equation 183

sin2)tl—2)\, = (), ‘

With arbitrary values of A, we also have from 63.59) the well-known expansion
(Ref. 31) _ ,
2] 1, g |
k——— 0 1\2 —k’zﬂ'z X ? [ (3. 61)
I

= T iz

while from expressions (3.58) and (3.61) for an eigen value AQ we have

22
%‘i k' — 1, to A;

k::() (A% — k2?2 T A (3.62)

Elimination of bz from expression (3.51) is now achieved by both terms

only by dividing by k'zﬂz and then summing over k from zero to infinity. The
result is the equation

124 _ . . ) ‘ . .
I G) LT 126 £ (1—v)DW ] — 3 (BCY —
K (3.63)
—vyDW) =0,
where 7{n) is Riemann's zeta function, and use ig made of the relationship
& 1 ‘
LQO o (22— 1) ¢ (n).: (3.64)

Elimination of b, from expressions (3.52) and (3.53) is directly obtained by

summation over k from zero to infinity

12C® + (3 —v)D® = — 1, (3.65)
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4CGL+VM3—W)Dm_“l¥_c(m[1+1zcm-% 184
T ; (3.66)
+ (1—v) D®] = 0.

The solution of the four equations (3.50), (3.65), (3.63) and (3.66) is

1 —v 2
(0 — Y — . .6
c 43 +v) » D€ 3+’ (3.67)

744 1

CW = "¢ (5) 1, |
o ©) 3+ v): (3.68) }

1488 1 , |
1) e
D - “®(3+ﬁ2' i

By means of expressions (3.56) and (3.57), we may now calculate

a{f’ —_— (_1)1:4-1 8 _ 1 (3.69)
3+ v kKint’
16 t 1 186 1 (3.70)
(3) = (___1\k . :
3k U515 v | on — c“ﬁ’

The coefficients béB) must finally be defined from the equations which follow

from expressions (3.52) and (3.51) when k = 0, 1, 2, ...

4
b At cos A

R A Sttt
€ 1= (/\21—1('271'2)2

= 0,

(148

A.zz COS/\[ !
b e - (3.71)

4
1 [ 1 _ ti? 5(5)]'

8

Re

=

T 3+v K | Kn

For future use, we should additionally note the relationship which is /85 |

obtained from the second equation (3.71) after multiplication by k'znz and
summation over k from zero to infinity |

o0 ‘
Re 2 b;z” A’;sin)&;: —I
i=i
{(3.72)
8 1 93
_ s |
» 3 +v] 2 £(3) 74(3) } J

3.6 The Moments, Transverse Forces, and Circumferential Stress

In the technical theory of the bending of thin plates, the bending mo-
ments M _ and M¢, the torque Mr¢ (= M¢r)’ and the transverse forces Q_ and Q¢

are introduced by integration of z-o zZ°0 ZT = 2T T and T over
y g r’ ¢’ r¢ ¢r’ rz’ ¢Z
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the thickness.

theory, the formulas are derived for some of these quantities.

Finally, in order to obtain an equation with the classical

At the boundary r = 1, expressions (3.26) and (3.25) are used to find

M W _
S f g:_"” cz2dz = |
( )r“l M, -

\40

o0 . p(l)
'=3[ > ek (— <+
k=0 k=7

+2%Re $ b,.fi—"it{ K (MB)—4) +

. (v 2 2—v)].
+Ye—2C+D )ty 7y |

R £ 1 S 1
M, /r=1 My a1 °
o0 (3)
in A
—+-4-vRel_§__‘,1 bzs‘l:zsgi {K(MB) — 1} —

T S__ 1—v 2 _2——v)
20+ D) =

(3.73)

(3.74)

186

(3.75)

Circumferential stress o¢ is computed from (3.25) and (3.24) by means of

expressions (1.18), (1.19), and (1.20). In dimensionless coordinates, ©

the form
T 1 R ] § IS 1
;T_—l/zz(l"‘i_—rz,‘) i Cobz?[z’—,@ i GC'I:-—I—
1 6 zZ \)
+D ( [ gt { St )\
2 0 ., SBK K =0r)
+ R 4 sink'zz ST
TTE S T T Kk

Klkfr,Gr)) TRe R by Sl BKa(upn)

— KB ) R 2 P Ks)

—

has

¢

(3.76)
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MB__ Ku(Mfr)

; K 0uf) {(AicotAy—2(1—+))sinAz— | (3.76)

I

—MizcosAiz}+ Re2r S byange.
1=1

Kz(kl,pr) .
. & (MB) sin Az, 1
‘which —- when r = 1 - is simplified to /87

<. _t'rli‘,_)rzl =z+cos2p [2.D(1 +v) —

—BRe R biAcothsinhz+2(1+v) B (3.77)
=1

on
Re 3 biA%sinhz + B%Re § b; . A%z . cos Az].
i=1 =1

by means of o = 0. The bending moment M, is computed from expression (3.77):

¢

MG P e -
(55 i e
. 3.78)
ey - sin? A; (
= D(1+v) +6v.8° CAr.
. ( V) VR Re,zl b - A cos At ’
which, after introduction of coefficients ¢, defined in expression (3.44), is
converted into
M _ L3 % to?hs |
(—I\’/I,_)r:l == D(1 +v) + -2—,32 Re lgl Cz.—).t_;:u-. | (3.79)

Circumferential stress ¢, on the boundary of the surface is determined

¢

from expression (3.77). It is found that

; 0(2) 0
( 2 )'zi = (1+v)(D+28Re S by.AysinA), (3.80)
Jz= =1
for which we may also write
0‘5,“ : 0 tg A |
— —1=(1+v)[ D+, BRe ‘).
( T /)zr:} RERe 2 a5 (3.81)

For the case of the very thin plate, expression (3.68) and (3.72) may /88
be used for expression (3.80) to write

g 9
£ =1 = (1 +v) .\___.{..
( T )z:l ( 3+ (3.82)
1 /1488 2+ 112 1
+g( 1 O g 5(3)3+v>+....§.
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3.7 Reissner's Theory

While, in the classical theory of the bending of thin plates, only two
variables -- the bending moment and the "reduced" transverse force —- may be
prescribed on an edge (Refs. 32, 33), Reissner (Ref. 10) has undertaken to
formulate a bending theory in which the three variables -- bending moment,
torque, and transverse force -- may each separately assume a prescribed value
on an edge. Green (Ref. 5) was the first to point out that from the three-
dimensional theory we may derive a theory which essentially agrees with Reiss-

ner's theory. For this purpose, the coefficients a bz, C and D are defined

so that expressions (3.73), (3.74), and (3.75) each becomes zero. Since the

three equations obtained in this way include threefold infinite unknowns, these

equations may be fulfilled by asduming only a , C, and D to be unequal to zero.
X . . o}

The following solution is found

A = ’
(3 + ) + if K( "23 )+ if
‘ _ \ |
(I_V)_;IZZZK(IQB_)_*_EIE( 8 541' +;8;,——8 ) .
C= o o (3.83)
K

=8 128
4(3 + v) +
@40+ K () g
—2

16 B 32
+ v
(3 ) + 17232 K ( 2 >+ 7r2B2

D=

Setting bl equal to zero may be justified by taking the fact into considera- /89

tion that Reissner's theory is a thin-plate theory (8 is large). As follows
from the asymptotic expansion (3.49), the sums with the coefficients bz are

then an order smaller in B than those with a, in expression (3.73) and (3.75).

k @ (2

Further, it is pointed out that in the expressions for the moments Mr s Mr¢ R

(2)

and M¢ the sum over % always includes the factor v. For v = 0 these moments

are thus independent of the stress state belonging to potentials Bl and BZ'

It may also be expected that for v > 0, the amount of this stressed state will
be small. Disregard of 2y 85, e with respect to a_ is justified by the

form of expression (3.69).

If the third equation (3.83) is used to calculate the moment M¢, we obtain
the expression

(M{,,‘-") _ —2(1 + v) 3
M, Jre1 16 B 32 (3.84)
3t K <_2_) + S

This value agrees with the moment quoted by Reissner, if m is replaced by v10.
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It should be remarked that the coefficients of expression (3.83) together
with a, = 0 and bz =0 for k, £ =1, 2, ... make the expressions (3.73), (3.74)

and (3.75) exactly zero for every value of B.
It is interesting to investigate how far this approximation theory of

Reissner's, for large values of B, agrees with the asymptotic theory. For this
purpose, the magnitude D from expression (3.83) given by D is expanded

1 Reissner
with respect to E
| 2 16 1 t
DReinner=—3+v—‘ . (3+V)2 ‘B t+.... (3.85)
from which by means of (3.68) it follows that
Dl(lle)lls;er =t
= ~ 1,01. .86
Dl 3L (5) (3.86)

This agreement is very good. Deviations from Reissner's theory may there- /90
fore be expected only if

(a) B is not very great, i.e., for thick plates;
(b) the influence of the variables neglected by Reissner (a., a,, ...
. 1’ 72
and bl’ b2’ ...) becomes noticeable,.

In thin plates, the values of 815 855 seo will always be smaller than
those of a5, mor can - the b2 values always be neglected in thin plates., While,
as already noted above, it can be expected that the effect of the bz values on
the moments is negligible, this is never the case for the effect on the value
of (60.) r=2z=1.

¢

Within the framework of the three-dimensional theory when bz and a, are

neglected, with k > 0, it is still more a question of restricting equations
(3.37) to three equations with three unknowns ay, C, and D, so that the
following solution is obtained

128 ]
——
a-O _ - b
o .. 16 __ =8\, 32
(\‘J LV)IG -2 ) I\( 24)7— H;rzk
(1__‘,)____125_21( (:28)__12_(4,,4-_&_"_1___‘)_)
c — =8 = B ‘B 1;5 /., (3.87)
™
4(3 +v) + YT K( 3 >+ﬂ'2,32
' —2
D = S
16 _ =8 32 ‘
B+ + g K( 5 >+ﬁ82 |

The stress distributions pertaining to expressions (3.83) and (3.87) are
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(2)

equivalent approximations for the thin plate. For the moment M , the same
expression is found in both cases. ¢
CHAPTER IV
NUMERICAL RESULTS FOR A PLATE LOADED IN BENDING /91

4.1 Introduction

The numerical calculations of the bending problem posed and formulated in
Chapter III consist of the computation of the eigen values, the determination
of coefficients (3.43), and the approximate solution of system (3.45). With a
Poisson number of v = 1/4, these computations are carried out for the values
g =1, 2, 4 and 6, which reduce system (3.45) to 10, 10, 8 and 6 real equations,
respectively, with the same number of unknowns. Reference may be made to Chap-
ter TI for general considerations in regard to the calculationms.

The results of these computations are collected in several tables. The
eigen values and K*-values in accord with expression (2.7) are collected in

Table VI. Tables VII give the coefficients xzél) and xzéz) for different
values of B, while the unknowns C, D, and ¢, are noted in Table VIII, The re-

2
sults in Table VIII are used to calculate the important mechanical quantities

o] M
jg-from formulas (3.81) and (3.79) for r = z = 1, as well as ﬁi for r = 1.

0
L@ e
In figures 11 and 12, —%— r=z=1 and (—%—)r _ 1 are given as func-
0

tions of B. The superscript (2) represents the coefficient of cos 2¢ in the
expression for the quantity. For purposes of comparison, these figures also
show the values according to the first term of the asymptotic expansion and
that according to Reissner, together with the classical values according to
Goodier. The values according to Reissner are based on the solution (3.87).

4.2 Conclusions

The chief purpose of carrying out the computations in Chapters III and IV
is to judge the accuracy which must be attributed to the theories of plate /98
bending which are used. Therefore, several quantities, which may well be con-
sidered the most characteristic, are compared with each other in the various

(2) (2)
¢ ¢

at the edge and M , the average value of

theorieé; i.e., the value of o
z-c(z)

¢
The graphs of Figures 11 and 12 give a true view of the reliability of

the theories. It must be taken into consideration that the quantities noted
here comprise only part of the corresponding mechanical variables. It is

over the thickness.
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TABLE VI

EIGEN VALUES AND K* VALUES 92
1=kt W N K* (k') K*(\)
1 1,5708 374884 1,3843 — 04875 —0,7236—i 0,0753
2 47124 6,9500+i 16761 —0.7504 —0,8251—i 0,0354
3 7.8540 (011924 18583 —0,8358 —0.8718—i 0,0209
4 10,9956 13277343 19915 — 08778 —0.8988—i 0,0138
5 14,1372 16,4299+i 2,0966 —0,9026 —0,9164—i 0,0099
K*(2)n)) K*(4;) K*(6))
—0,8445—i 0,0489 —09173—i 00281 —0,9437—i 0,0197
—0,9057—i 0,0208 —0,9510—i 00113 —0,9669—i 0,0077
—09323—i 00117 —0.9652—i 0,0062 —0,9766—i 0,0042
—0.9472—i 0,0076 _0.9730—i 0,0040 —0,9819—i 0,0027
—0,9567—i 0,0065 —0.9779—i 0,0028 —0,9852—i 0,0019
TABLE VIIa
*(1)
VALUES OF x,,~ FOR 8 = 1 93
l 1 2 3 4
x
0 —0,0387+4i 0,1484 —00161+i 00155 —0,0060+i 0,0038 —0,0028+i 0,0014
1 0,1058—i 0,1317 0020441 00660 —0,0121+i 00102 —0,0054+i 0,0030
2 0,0048—i 0,0139 00711—i 00691 —001244+i 00481 — 0010144 00085
3 0,0049—i 0,0040 0,00240 0,0109 0.0577—i 0,0497 —0,0083+i 0,0402
4 0,0038—i 0,0020 0,0005—i 00025 —0,0040—i 0,0106 0,0502—i 0,0401
| _
TABLE VIIb
*(2)
VALUES OF x,,~’ FOR 8 = 1
! 1 2 3 4
k
0 —0,0302+i 0,1666 —0,01724i 0,0169 —0,0064+i 0,0041 —0,0030+i 0,0015
1 0,1621—i 0,3858 0031741 0,1369 —0,0219+i 0,0199 —0,0095+i 0,0056
2 —0,0489—i 0,0515 02224—i 03328 —0,0273+i 0,615 —0,0200+i 00269
3 —00218—; 00151 —0,0009—i 0,0673 0,2715—i 0,3279 —0,02254i 01911
4 —0,0120—i 0,0071 —0.0311—i 00185 —0,0683—i 0,0846 0,3157—i 0,3347
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TABLE VIIc

%
VALUES OF Xmil) FOR 8 = 2 194
! 1 2 3 4
k
0 —0,1121+i 0,3525 —0,0419--i 0,0388 —0,0157+i 0,0098 —0,0084+i 0,0036
1 0,3245—i 0,3664 —0,0688-4-i 0,2057 —0,0394+i 0,0325 —0,0176+i 0,0097
2 0.0164—i 0,0397 0,2408—i 0,2223 —0,0448+i 0,1637 —0,0573+i 00293 |
3 0,0150—i 0,0106 —00068—i 0,0368 0,2039—i 0,3699 —0,0307+i 0,1428 |
4 0,0124—i 0,0048 0,0022—i 0,0085 —0,0134—i 0,0375 0,1821—i 0,1422 |
TABLE VIId
*(2)
VALUES OF x, FOR B = 2
! 1 2 3 4
k ]
0 —0,1372+i 0,5083 —0,035581i 04535 —0,0207+i 0,0132 —0,00974i 0,0048
1 0,8553—i 2,1594 017994 i 07668 —0,1241-+i 0,118 —0,0540+i 00317 |
2 —0,3393—i 0,3244 1,4008— i 2.1931 —0,1818-+i 1,0657 —0,1924+i 0,1775
3 —0,1602—i 0,0965 04263~ 04672 1,8048—i 2,2852 —0,1590+i 1,3351
4 —0,0911—i 00455 —0,2247—i 0,132 —0,4916—i 0,6002 2,2795—i 2,4116
TABLE VIIe
*
VALUES OF Xmgl) FOR B = 4 95
i 1 N 2 3 4
k
0 —0,3648+i 1,0436 —<0,1301+i 0,182 —0,0492-+i 0,0303 —0,0233+i 0,0112
1 1,1487—i 1,2013 ~025294i 07244 —0,1422-+i 0,181 —0,0640+i 0,0350
2 0,0664—i 0,1354 0,8576—i 0,7919 —0,1699-+i 0,6037 —0,1325+i 0,1086
3 0,0600—i 0,0352 -_0,0210—i 0,1354 0,7670—i 0,6272 —0,1187 i 05378
4 0,0462—i 0,0153 --0,0099—i 0,0314 ——0,0480—i 0,1412 0,6936—i 0,5347
TABLE VIIf
*(2)
VALUES OF x, FOR 8 = 4
y 1 2 3 4
k
0 0668811 2,3792 - 026654+1 02331 —0,0993+i 0,0628 0046511 00228
1 5,7893—i 14,6314 —1,23874+i 05226 —0,8506+i 1,3926 0370241 0,2168
2 —2,4538—i 2,3313 10,6096—i 15,8675 —1,3320+i 77413 —1,4020+i  1,2909
3 —1,1979—i 07136 —31856—i  3,5016 14,2437—i 17,1326 —1,2054-}i 10,0380
4 —0,6905—i 0,3400 —17034—i  1,0048 —37334—i 4,6392 17,3889—i 18,3014
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TABLE VIIg

*
VALUES OF Xmil) FOR 8 = 6 96

0 —0,7625+i 2,144 —0,2682+ 02222
1 24872—i 25229 —05531+i 15624
2 . 0,1517—i 0,2899 1,9442—i 17125

TABLE VIIh
*(2)

VALUES OF Xok FOR B = 6

AN ! | !
1 2
e\ |
0 —19244+i 67725 —0,7628+i 07228
1 18,6323—i 46,8700 —3,9989+i 16,7959
2 —8,0104—i  7,6309 34,8230—i 51,9744
TABLE VIII
VALUES OF C, D, AND c, /97
8 c } D ] <,
1 0,2197 I —09887 | 1,6699—i 04180
2 0,1589 —08281 | 0,2556—i 0,0748
4 0,133 —07271 | 00369—i 00124
6 00959 | —0,6905 | 00107—i 0,0037 ;
) . ‘ )
!
. | ‘, | 3 |
0747447 00052 | 033474 01136 0,1065+i 0,1086
0,0923—i 0,000 ' 0,1110—i 00155 —0,0152+i 0,0623
0,0105+i 0,0024 0,0026-+i 0,0026 —

0,0028+i 0,0004 — - i



1
N
o~
1 &

44
o berekende punten (a) ‘
—————— asymptotische benadering b
—_—— waarden voigens E Reissner (o
1364 | T — waarden volgens JN. Goodier (d
1.28
\
1.20 \
1.12
1.04
0.96
0.88
0.80
——— e e — R ‘
|
0.72
p—=0 1 2 3 4 5 6
Figure 11
2 e s — i
Value of cé ) Along the LEdge of ihe Hole on the External Plane /99

(a) - Calculated points; (b) - Asymptotic approximation; (c) -
Values according to E. Reissner; (d) - Values according to J. N.
Goodier.

always true that op= o + o cos 2,

My =M + M cos 2¢

(0)

and in the wvarious thgories oéo) and M¢ have the same value. The relative
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Moment M& Along the Edge of the Hole /100

(a) - Calculated points; (b) - Asymptotic approximation;
(¢) - Values according to E. Reissmer; (d) - Values according
to J. N. Goodier.

deviations in the maxima from the mechanical variables will thus always be
smaller than the deviations from the noted variables. But these differences

have an effect on the conclusions which can be drawn:

(a) the classic solution has only a very restricted application;
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(b) the theory of Reissner is excellent as an average-value theory;
(c) on the surface, only the three-dimensional theory is reliable.

Although these conclusions are based on the results which are obtained in
calculating a special problem, the bending of a large plate with a circular
hole, it may nevertheless be expected that their scope is much wider and that
they are of general application in plate bending problems.

Reissner's theory is adequate to compute the moments which occur, as is
clear from Figure 12. The maximum error which appears in the moments is no
more than 2%. The fact that methods of calculation according to Reissner for
thin plates give good results may be explained by means of formula (3.86). It }
is not automatically clear, however, that this theory also gives the approxi-
mately true value for the moments in plates of medium thickness . If the pass-—
age to the limit B -+ O (which in itself is meaningless) is made in formula
(3.84), we obtain the expression

M ‘ |
( Mq:) ) -*—2, ! (4.1) |
|

the exact value for the thick plate. This result, together with the value /101
obtained from the numerical calculations when B = 1, gives an explanation of
the good agreement found over the whole region of the ratio of hole-diameter
to plate-thickness.

It goes without saying that for typical stress concentrations in thick
/o

plates, like ﬁ%'z = r = 1° OVery average-value theory must be insufficient.

This is also true of Reissner's theory. It is remarkable, however, that here
the error in the value found with the classical theory is just as great as

that found by Reissner's theory. In a plate which is not too thin the error |
here is on the order of magnitude of 77%.

CHAPTER V
THE MATHAR-SOETE METHOD /102

5.1 Introduction

This chapter will discuss the theoretical foundation of an experimental
method of determining the residual stresses on the external surface of a struc-
ture by measuring the changes in strain which occur after a cylindrical hole
is bored. This method is known in the literature as the Mathar-Soete method
and, in short, reduces to gluing three small strain gauges on the face of the
structure; they are symmetrical to,and at the same distance from,the hole
which is to be bored. From the indications of the strain gauges, it is possi-
ble to compute the principal stresses on the surface of the structure, as well
as the angle which the principal stresses make with a fixed system of axes.

It is outside of the scope of this paper to enter into the details of the
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experimental execution of this method. Conclusive calculation of the stresses
from the requisite formulas likewise remains untreated. For these things the
existing literature (especially Refs. 12 and 16) is to be consulted.

The problem that is to be treated in this chapter, however, is the effect
of the three-dimensional state of stress on the indications of the strain
gauges. In the literature, to be sure, it is unusual to calculate from the
standpoint of a two-dimensional state of stress, although certain publications
have been conscious of the fact that deviations from this state of stress
should be taken into consideration (Refs. 15, 6).

If in the two-dimensional state of tension the principal stresses are

given by Tl and T24~and the Tl direction coincides with the X-axis, then

according to expression (1.24) it is true for the whole plate that /103

T,+T
= 2-f-Tl,)T cos 25,

-

T.+T. T,—T.

op = ‘2 - — 12T'c052<;:, (5.1)
Tl““Tz.

e = — sin 2p.

After the hole has been bored, the two-dimensional stresses are (compare
expressions [1.33] and [1.34a])

. T1+T2 a® Tl—Tg )
or 3 (1 r2>+ 5 cos 2p S
T, + T 2 T,—T, ' 1
op == 12 2( 1+ ig) +;2*-C0529 \_.l_ga%‘_i, (5-2)
T,—T. . L a :
Trg == TT sin 2¢ ; —1 +3i4 —2—?_,(.
N — 1

The stress changes to be measured are thus

w7

, _ Ti+T a'\ T,—T. y et
of = (— r2)+—2——cos2¢(_4r—2 +3 2t
%':TI_““E(*‘“\+T_1—_T:r052 Y _a2t) (5.3)
P \r* ) 2 - ( *s’
—_— 2 4
fw'-__—..Tl__T_z_ Sinzsag_z?':. +33—). !
2 ( r? r‘s

The prime (') indicates that these are changes in the variables. From expres-
sion (5.3) the tension changes may be computed, and from them the predicted
indications of the strain gauges. The thus found formulas are, however, not
entirely complete for the simplified assumption of a two-dimensional state

of stress, and will now be made complete. /104

To simplify the notation, the primes on the stress and strain changes will
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be omitted in this chapter and T, will be set equal to zero. Furthermore, the

2
radius of the hole is introduced as the unit of length.

5.2 General Formulas

5.2.1 Transformation of the System of Axes of the Strain Gauge

Stress T acts in the X-direction. Rectangular strain gauge 2d in
width and 2 in length is glued at the angle o (see Figure 13). A new (x, y)
system whose x-axis makes an angle o with the X-axis gives the rectangular
coordinates of points on the strain gauge. Since the strain must be averaged
over the gauge, it is necessary to define the magnitudes of deformation with
respect to this system. It is clear that

X == rcos (ga—-a),:'J ! (5.4)

y = rsin (p—a), - |

whence |
dx = cos (p—a) dr—rsin (¢ —a) dg, 105

dy = sin (¢—a) dr + rcos (¢ —a) de.

For the tensions in the new coordinates
|

ex == & c0s’(p—a) + ep sin?(¢ — @) — ygrsin(p — a)cos (s — a),
. 4 v Jeos (7 —e. (5.5)
gy = &sin® (p—a) + £p cos*(¢p—a) + ygrsin(¢ —a)cos (¢ — a).
holds true; from this it directly follows that
(5.6)

Zx+8y=er+£¢. ’

5.2.2 Relative Change in Resistance

In a homogeneous strain field € o ey the relative change in strain

A . . .
1?3 consists of two components, parallel to the longitudinal
and transverse strain, respectively

gauge resistance,

Kl and K. are defined by this [ormuia.

In an inhomogeneous elastic field, integration must be carried out over
the whole filament of the strain gauge. The relative change in resistance now
becomes

AR K

L
= d’
R L e (5.7)

in which K is the strain gauge constant for a single filament, L the whole
length of the filament, and € is the strain in the filament direction.
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Figure 13

Location of Strain Gauge with Respect to the Hole

If the strain gauge consists of an adequately large number of windings,

expression (5.7) may, with good approximation, be replaced by /106
AR = - -
T ] K[ Ex +1/2Kd(5’)x=C + 1/2 Kd(Ey) x—_—c+l L (5.8)

in which the first term represents the (most important) contribution in the
longitudinal direction of the gauge, while the second and third terms are
derived from the trahsverse filament elements located at the ends of the band.

The quantities ?; and E& are defined by

= 1 +d c+l (5.9)
m i e
3 1o o | (5.10)
&y = 2d -E{ €y d\"' l

where ¢ is the distance from the front edge of the strain gauge to the origin
(see Figure 13).

If the measuring bridge is as usual set at the standard constant 2, the

value measured is p =1/, %%.
Since € and ey are parallel to %3 we can write
AR T
p="h—g—=P.— T (Q+R). T cos2a (5.11)

It is the aim of the calculations to find expressions for P, Q, and R. The
(artificial) division of'% cos 20 into (Q + R) indicates the difference in
nature between the elementary and the non-elementary part of the coefficient.
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5.2.3 Some Integrals /107

Before proceeding to the actual calculation, we will here give sever-—
al elementary integrals which play an important role in computing the variables.

These integrals are defined by means of the following relationships:

cos2(p—a) =cos?(p—a)—sin?(p — a) =_“—:“_ |
x*+y
. S xz__yz 2 2 i
cos (4? 2a) = cos2a ( 2 (m) —-ls + ;
. x?—y? \2 4 xy (5.12)
+ sin 2(1 (m) . ?:"‘y.__,': !

I

cos 2¢ cos 2(¢—a) cos2a —sin2(p —a) sin 2e,

sin2¢ = sin2(¢p —a) sin2a+sin2(¢y —a) cos 2a.

It is found that

+d
fay co2lp—e) 2 (5.13)
- r* x* + d*
|
+d c+l —_— f
Ldyfcdx' cos 2(; @) _ 2(arctg—i-—arctg E%), l (5.14)
i cos (2a — 4p) 2d (x*—d?)
Ldy'*—r’- == cos 2a.————(xz T (5.15)
+d e+l —4 ) c
dy [dx o5 (2a—4y) -
_{ ch = cos 2a . 2d PR
iy (5.16)
c
-m}
+d —_ l
fap colatl o aine— ) .17)
- r {(x* +d)® -’
A et 2 — 49p) 2d c
dy [ dx SO8lea—%¢) ) _
-fd ycf = cos 2a B ECETSE
(5.18)

c+!
(& F (c+l)2)2J'
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5.3 Calculating Deformations

5.3.1 Pure Tension Loading

The stress variations along the surface z = 1 are determined by the

following formulas (see also expressions [1.104], [1.105])

——grf—: — le“:‘ cos 2¢ GC.%—D 54_(1r;+v)
12y 1 C_ 2 § 3K, (knBr)
+ o o = % a(— 1)k (w_
— (kn K, (k=Br) )
(k ,31‘) m—s + Re IE bz 32(1-—1’) COSAI
(1 6K,(A81) AMB o Ky (MBr)
( r K:(MB) — r K:(A:8) )+
202 KZ('\I'Br) )
+ 2cos ;. A28 WsJ,
14 1 1 ~ —_ _14, <4 \_1;2", _l ’_’_
s e RIS

2 . ks;ﬂ(g(kwﬁr)__ _py KiikmBriy
re Ek ak( 1) ‘( Kg(kﬂ'ﬁ) ( “Br) Kz(kh’ﬁ)\ .

+

1 6Ki(Mfr)

+Re ¥ b 3—2(1—V) cos Ay ( = Kz (A:B)

! A"B Kl()\zﬁr) ) 2 ZM.L/
T RmA )TN ey |
o oo 1 (2(1+v) 120 1)
S (PTTN TEEY

Lo (et OKelkmpr) |y o Ko(knfr)
+—r?2 ap(— 1) ? K. (k=8) + (knpr) K. (k=B)

k

_ kg K (kefr) )

=

Y KaikeB) y | Re T be

S . [ 3 Ka{A8r)
_— —_— A _— 4
) 4 (1l —v)cos i ( 2 K8 T

+ A K, {\Br) ))
r K. MB) 1y
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From formulas (5.12) to
Hooke's law

Oy — Voo

&8 = — T
E b

U¢ — VO
= f o

Yo = %—zz—w2(l + v).

The first two formulas hold true here because o
face. For extra deformations it is now found that

Ee, 1+
—'T—= —1/2(1‘%2)‘? C05297 [5(1 + v)C—rlf——
—D.4(1+y) 31 LN
e R s
2(1+v) « § 3K, (knfr) K, (k=gr) )

2 % ay (—1) zm — (k=Br) Kz(kTBTg +
S 1 6K, (A;8r) _

+2(1—v?) Re > brcos ;.
13

( r K. (Mi8)
_ AiB K1(I\ZBI‘)
r K:(AB) g
+2(1— 1) Re T bycos ;. A28 M@L}
! K:(M:8) |7

Ee L+ 0o, 1
~~T¢—= ‘,gi——;z—v—)——r cos 2y {—6(1 + v)C-—r‘ -+
1 3 1
+D. S !
D.4v(1+ ) ( = + g = S +
2(1++) { 3K, (k=Br)

+ 2 Zak (""1)“ ZW-—

k

K, (k=
— (kwpr) _I(z((khﬂl;r))g —2(1—+v?) Re ; b; cos A; .

(r MB) Tt Ka(MB)

S. 1 6K2(Az@r) A8 K, (A:8r) )}

(5.21), €. e¢, and Yrq) are calculated by means of

(5.22)

= 0 over the sur- /110

(5.23)

~~
()]
.
N
B
-
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Eyrw—=sin2¢[l2(l+v)CL—Ds FSERNEIL I |
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From strains (5.23) to (5.25), €4 and ey are calculated by means of expres-

sions (5.5) and (5.6). After some calculation it is found that the parts of

e, and ey symmetricalwith respect to the y-axis are
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From expressions (5.26) and (5.27) ?; and E§ are calculated in accord with ex-

pressions (5.10) and (5.11). Here use is made of the integrals which are
computed in Section 5.23. Then p, in which the coefficients P, Q, and R occur,
is determined by means of expressions (5.9) and (5.12). For convenience these
coefficients are broken up as follows:

P=P1+P21+P22,
Q=Q1+Q21+Q22+Q3+Q41 +

|
| (5.28)
+Q42+Q3+ Q61+Q62, i
|
R = R, + Ry + Re: + Ry + R,y + Ry, 1
{
in which the various portions are given by /113
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If very narrow strain gauges are used we may in the first approxima- /115
tion assume d = Kd = 0. In this case, the forms (5.33) to (5.34) are consider-

ably simplified since the integrals may be considered definite.

The limiting case d = 0 gives
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It is clear that constant P is entirely defined by the two-dimensional /116
theory (see expression [5.29]). The three-dimensional perturbation thus is
expressed only in the constant Q + R.

5.3.2 Some Numerical Results for Pure Tension

The voluminous numerical computation was carried out for some cases.
This can give adequate insight on the one hand, into the three-dimensional per-
turbation of the two-dimensional theory and, on the other hand, into the effect
of the finite width of the strain gauge. Here v is always taken to equal /q,
while ¢ = °/3 and % = 4,

The comparison is based on strain gauges of different widths, all of
which have the same resyltgnt strain gauge constant Kr in a state of linear
stress . The symbol ¥ is introduced for the ratio of "transverse sensitivity

Kd to longitudinal sensitivity K2 (see Section 5.22). The value of 2.01 found

by van Dongen is used for the strain gauge constant Kr' For a length/width

ratio of 2, the experimental value of 0.028 is established for the transverse
sensitivity x of a strain gauge. For a narrow strain gauge, X is assumed to
be zero. Table IX §1ves the computational results for the four combinations

d=0orland B= "/ or =.
TABLE IX
Q R || Q+Rr P
B— oo | —0179 0 01798 | —0,0665
d=0
—1, | —02449 00615 || —0,183¢ | —0,0665
]1
B—ow | —0,1388 0 || —0,1388 | —00552
d=1
|
B=1, | —o,1701 00270 ) —o431 | —00552

The table indicates that the effect of plate thickness on coefficient /117
Q + R is slight. Although perhaps a greater effect can appear for other re-
lationships of the measurements, in particular if the strain gauge is brought
still closer to the edge and is shorter, it may be expected with certainty
that the correction to the result of the two-dimensional theory is always
of subordinate importance. Of much greater significance is the effect of the
finite width of the strain gauge, as may be gathered from the results which
are given for the same value of B and with various values of d.

'5.3.3 - Pure Bending

We treat the bending of a performated plate loaded by a bending

moment MO operating along an edge parallel to the Y axis. The formulas of
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Chapter III can be applied here.

There is no point in repeating the calculations, which are quite similar
to those in Section 5.3.1. Merely the results of the computations are given.

We find
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5.3.4. Adaptation of Reissner's Theory

The results of section 5.3.2 demonstrate that with pure tension the
plate thickness has merely slight effect on the measured specific variatiom in
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resistance of the strain gauge. Based on the results reported in Chapter IV,
however, it is to be expected that with pure bending the effect of plate
thickness will be much greater, as is also ascertained by the experiments

(Ref, 16). Finally, to obtain qualitative insight into the connection existing
between specific resistance variation and plate thickness, without again having
to carry out voluminous computations, the factor Q + R is calculated by means
of the Reissner theory for a linear strain gauge; factor P is already ex-
plained entirely by the classical theory. Our starting point in this is the
variable (3.87), while the given strain gauge parameters are

d=0,c=2,%=4, K = 2.0L

Figure 14 represents the result. For factor Q + R the deviation from the
classical theory is very important.

(0+R)
‘ -0.120 /120
—_— berekend met de benadering volgens (8.)
E.Reissner i
——————— berekend met de benadering volgens (b) :
J.N. Goodier
-0.100 \
- 0.080 k
\ {
- 0.060 \ )

-0.040 \
|
\ - |
-0.020 \ ,
I ;
I ———— e e [ . —
0 ‘ .
2 = 0 2 a 6 8 10
Figure 14

Coefficient (Q + R) for a Linear Strain Gauge in the
Case of Pure Bending. (For given strain gauge parameters see this page.)

(a) - Calculated with approximation according to E. Reissner; (b) - Cal-
culated with approximation according to J. N. Goodier

Fromthe results in Figure 11, Reissner's theory seems rather unsuited for
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giving insight into displacements on the surface. The great differences which
may exist on the hole-edge r = 1 will, however, at values of r > V2 already

be substantially reduced because the differences with respect to the classical
theory decrease exponentially with radius r according to expression (3.26).
This phenomenon is clearly illustrated by Figure 3 for the case of pure tension.

5.4 Comparison of Theoretical and Experimental Values 121

It is interesting to find out whether the complicated theory which is de-
veloped here is capable of explaining the known experimental quantities. A
group of measuremental results, for which all parameters are accurately known,
is the one given by van Dongen (Ref. 15). Van Dongen has restricted his meas-
urements to strain measurements on a plate with the following strain gauge
characteristics

ve=10274; ¢ =3[, =4, d=1; K, =201, y = 0,028 ]

He finds

[

P = —0,0590,
Q+R = —0,1394.

The theoretical values computed in § 5.3.2 are related to

v=025; c =5/, l=4, d==1;K, =201, y = 0,028

and are (see Table IX)

P = —0,0552,
Q + R = —0,1431.

It may be said that the agreement is very satisfactory.
The deviations may have their origin in the following causes:

1. v does not have the same value;

2, tolerances in the experiment must be adjusted to the values of & and
cs

3. the theoretical values are surface averages, but must be linear inte-
grals along the strain gauge filament (see § 5.2.2;

4., the manner of loading in this experiment is not ideal in nature, as
is assumed in theory.

[

In summary we may say that relative resistance variations in the strain
gauge are always predicted with good approximation by three-dimensional theory.
In most cases, however, we will be able to make do with an even simpler theory.
Thus, according to § 5.3.2,for pure tension the classic two-dimensional theory
is almost always sufficiently accurate, while for pure bending the correc- /122
tion according to Reissner's theory is for the most part adequate (§ 5.3.4).

. The numerical parameters given in Chapters II and IV are certainly sufficient
in any concrete case to ascertain to what degree the simplified theory may be
reliably applied.

90



10.

11.

12.

13.

14.

15.

16.

18.

19.
20.
21.
22.

REFERENCES /123

Kirsch, G. Die Theorie der Elastizitidt und die Bedlirfnisse der Festigkeits-
lehre (Theory of Elasticity and the Requirements of Stress Analysis).
z.v.D.1., 42, 797, 1898.

Filon, L. N. G. On an Approximative Solution for the Bending of a Beam of
Rectangular Cross-section., Phil, Trans. Roy. Sec. A 201, 63, 1903.

Love, A. E. H. Mathematical Theory of Elasticity, 4th Ed., Cambridge,

1934,

Green, A. E. Three-dimensional Stress Systems in Isotropic Plates I. Phil,
Trans. Roy. Soc. Lond. A, 240, 561, 1949,

Green, A. E. The Elastic Equilibrium of Isotropic Plates and Cylinders.
Proc. Roy. Soc. A, 195, 533, 1949.

Sternberg, E., Sadowsky, M, A. Three-dimensional Solution for the Stress
Concentration Around a Circular Hole in a Plate of Arbitrary Thickness.

J. Appl. Mech., 16, 27, 1949,

Bickley, W. G. The Effect of a Hole in a Bent Plate. Phil. Mag., 6, 48,
1014, 1924,

Goodier, J. N. The Influence of Circular and Elliptical Holes on the Trans-
verse Flexure of Elastic Plates. Phil. Mag., 7, 22, 69, 1936,

Reissner, E. On the Calculation of Three-~dimensional Corrections for the
Two~dimensional Theory of Plane Stress. Proc. Fifteenth Semi-ann. East.
Photoel. Confer., 23, 1942,

Reissner, E. The Effect of Transverse-Shear Deformation on the Bending of
Elastic Plates. J. Appl. Mech., 12, 69, 1945.

Mathar, J. Ermittlingen von Eigenspannungen durch Messung von Bohrlochver-
formungen (Residual Stress Data from Measurement of Borehole Deformation.
Arch. f. d. Eisenhiittenw., 6, 277, 1932,

Soete, W., Vancrombrugge, R. An Industrial Method for the Determination
of Residual Stresses. Proc. Soc. Exp. Str. An., 8, 17, 1950.

Soete, W. Measurement and Relaxation of Residual Stresses. Weld. J. Res.
Suppl., 354 s, 1949,

Soete, W., Vancrombrugge, R. Het meten van eigenspanningen in diepte
(Measurement of Residual Stresses in Depth). Lastijdschrift, 4, 17,

1948,

v. Dongen, L. Bepalingen van las- en gietspanningen (Determining Welding
and Casting Stresses). Ingenieur, 63, 0.45, 1951.

Boiten, R. G., ten Cate, W. A Routine Method for the Measurement of Re-
sidual Stresses in Plates. Appnl. Sc, Res., A, 3, 318, 1953.

Biezeno, C. B., Grammel, R. Technische Dynamik (Engineering Dynamics),

I, § 17, Berlin, 1939. /124

Boussinesq, J. Applications des Potentials (Potential Applicatioms), Paris,
1885.

Watson, G. N. Theory of Besselfunctions, 2nd Ed., Cambridge, 1944.

Whittaker, E. T., Watson, G. N. Modern Analysis, 4th Ed., Cambridge, 1946.

Hiitte, I, 25th Ed., 168, Berlin, 1925.

Papkovich, P. F. De uitdrukking voor de oplossing van de fundamentele
elasticiteits—vergelijkingen in harmonische functies (in R) [The Ex-
pression for the Solution of the Basic Elasticity Equations in Harmonic
Functions (in R)]. Akad. Nauk. SSSR, Phys. M.S., 10, 1425, 1932.

91




23.

24,

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.

92

Eubanks, R. A., Sternberg, E. On the Completeness of the Boussinesq-
Papkovich Stress Functions. J. Rat. Mech., Anal., 5, 735, 1956.

Table of the Besselfunctions J.(z) and Jl(z) for Complex Arguments, Ed. by
Comp. Lab., N.B.S., New York, 1947,

Table of the Besselfunctions Y,(z) and Yl(z) for Complex Arguments, Ed. by
Comp. Lab., N.B.S., New York, 1950.

Hayashi, K. Fiinfstellige Tafeln der Kreis und Hyperbelfunktionen (Five-
Place Tables of Circular and Hyperbolic Functions). Berlin, 1931.

Horvay, G. The End Problem of Rectangular Strips. J. Appl. Mech., 20,
87, 1953,

Hillmaon, A. P., Salzer, H. E. Roots of sin z = z, Phil., Mag., 7, 34,
575, 1943,

Fadle, J. Die Selbstspannungs-Eigenwertfunktionen der Quadratischen
Scheibe (Residual Stress Eigen-Value Functions of Square Plates).
Ing. Arch. IT, 125, 1941.

Kellogg, 0. D. Foundations of Potential Theory, Chapt. VI, New York,
1953, '

Knopp, K. Theorie und Anwendungen der unendlichen Reihen (Theory and
Application of Infinite Series), 3rd Ed., § 50, Berlin, 1931.

Love, A. E. H. Math. Theory of Elasticity, 4th Ed., Chapt. XXII, Cam-
bridge, 1934,

Biezeno, C. B., Grammel, R. Technische Dynamik (Engineering Dynamics).,
Chapt. VI, Berlin, 1939.

Dougall, J. An Analytical Theory of the Equilibrium of an Isotropic Elas-
tic Rod of Circular Section. Trans. Roy. Soc. Edinb., 49, 895, 1913.




SUMMARY

In the classical theory of elasticity, the solution of problems concerning
stretching and bending of plates is usually based on the theory of generalized
plane stress. It is to be expected that in some cases the deviations from the
classical theory, due to the three-dimensional character of the stress distribu-
tion will become important. For the special cases of stretching and bending of
an infinite plate with a circular cylindrical hole, a rigorous analysis is
developed in this thesis. The method of investigation is based on the use of
complex eigenfunctions, whose general theory was developed some years ago by
Green (Ref.5). It is the purpose of this investigation to examine the effect of the
plate-thickness on the stress distribution and to discuss the errors due to the
approximate character of current two-dimensional theories. Although this in-
vestigation covers only some special problems and is not intended to give a
general theory, it is believed that the conclusions arrived at here will hold
more generally. Apart from this fundamental aspect of the present investigation,
the calculations made for the threedimensional stress distribution also provide
a theoretical basis for the method of Mathar-Soete for the measurement of resi-
dual stresses.

In Chapter I the amalytical theory is given for the stretched plate. The
solution is found by means of a superposition of plane stress solutions and
three-dimensional solutions. The boundary conditions at the hole lead to an in-
finite system of equations for the coefficients of superposition. The solution
of this system is approximated by truncation to a finite system. In the case
of a very thin plate, the three-dimensional solution becomes a perturbation of
the plane stress solution. It is then possible to give the asymptotic develop-
ment for the coefficients.

The component solutions used are derived from three harmonic stress-func-
tions. In the appendix to Chapter I a proof is given for the completeness of
this system of stress functions for a class of regions including the one under
consideration.,

In Chapter II the numerical results for the case of stretching are given
corresponding to a value of 0.25 for Poisson's ratio.

The more important results are shown in the figures 2 to 9. In most of
these figuree thc results are compared with those obtained by Green for the
case B = 1, where B is the ratio of the diameter of the hole to the plate thick-
ness. In general the two computations show very good agreement. In Figure 2 |

the mean value o, of the normal stress acting perpendicular to the plate faces
is given as a function of 8. The value of Ez, given in this figure can be con-

sidered as a measure of the deviation from the plane-stress and the plane-strain
state. The dependence of 9,5 for 8 = 1 on the radial distance is shown in Fig-

ure 3. From this graph some conclusions can be drawn which are of interest for
the interpretation of the results obtained with the Mathar-Soete-method. In
Figure 4 the stress o, itself is given as a function of the thickness coordinate

z for several values of B. It can be seen that at 8 = 1/2 the value of o, at
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the middle plane agrees approximately with the value of the plane strain solu-
tion. The maximum value of O, which occurs at the middle plane is shown in

Figure 5 as a function of 1/B. TFigures 6 to 9 refer to the tangential stress
o, at the hole. Figure 6 gives the mean value, Figure 7 the value at the faces

¢
of the plate, and Figure 8 the value at the middle plane, all as a function of
B. In Figure 9 the distribution over the thickness is shown. Of particular
interest are the results of Figure 7 from which it can be seen that the stress
concentration at the boundary differs by more than 107 from that given by clas-
sical theory.

In Chapter III the analytical theory of bending of plates is given. Spec-
ial attention is paid to the case of the thin plate, and the relation of the
present results to those based on the theory of Reissner is discussed extensively.

The numerical results for the case of bending are given in Chapter 1IV.
In Figure 11 the most interesting stress, the tangential stress 0¢ at the edge

of the hole, is shown as a function of B. Comparisons are made with the cor-
responding results obtained by Goodier and by Reissner. Figure 12 displays
the B-dependence of the tangential moment M¢. It is apparent from the com-

parison with the theory of Reissner, that this theory gives a very good approxi-
mation for the stress-resultants, but by no means for the stresses themselves.

Chapter V deals with application of the general theory presented here to
the Mathar-Soete method of evaluation of residual stresses. The effect of the
plate thickness on the evaluation of the strain gauge readings is discussed in
some detail, The main results are as follows:

(a) for the case of stretching, the effect of the thickness is not very
important in practical instances;

(b) for the case of bending, there 1is a strong effect of the thickness,
as can be seen from Figure 14, where the thickness-dependent part of
the resistance deviation has been shown for a very narrow strain-gauge
in the first approximation;

(c) the effect of the width of the strain-gauge is very important so that
a surface integration over the strain-gauge is necessary.
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